

Changes in Serum Level of Autotaxin with Direct-Acting Antiviral Therapy in Patients with Chronic Hepatitis C as a Biomarker for Predicting Hepatic Fibrosis

Thesis

Submitted for Partial Fulfillment of Master Degree in **Internal Medicine**

By

Basma Mohamad Mohamad Hassan

M.B.B.Ch, Ain Shams University

Supervised by

Prof. Dr. Engy Yousry ELsayed

Professor of Internal Medicine and Gastroenterology Faculty of Medicine - Ain Shams University

Asst. Prof. Dr. Hossam Samir ELbaz

Assistant Professor of Internal Medicine and Gastroenterology Faculty of Medicine - Ain Shams University

Dr. Salah Shaarawy Galal

Lecturer of Internal Medicine and Gastroenterology Faculty of Medicine – Ain Shams University 2019

Faculty of Medicine - Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Engy Yousry Elsayed**, Professor of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Asst. Prof. Dr. Hossam Samir & Lbaz, Assistant Professor of Internal Medicine and Gastroenterology, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to **Dr. Salah Shaarawy**Galal, Lecturer of Internal Medicine and Gastroenterology,

Faculty of Medicine, Ain Shams University, for his great
help, outstanding support, active participation and
guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Basma Mohamad Massan

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	10
Introduction	1 -
Aim of the Study	16
Review of Literature	
Hepatitis C Virus	17
The Process of Liver Fibrosis	34
• Serum Autotaxin as Abiomarker for Liver Fibro	sis 78
■ Direct Acting Antiviral Drugs (DAAs)	92
Patients and Methods	130
Results	146
Discussion	168
Conclusion	175
Recommendations	176
Summary	177
References	
Arabic Summary	

List of Tables

Table No.	Title Page N	V o.
Table (1):	METAVIR and Ishak staging systems for liver fibrosis	62
Table (2):	Non-invasive marker cut-offs for prediction of stages of fibrosis, including F3 (advanced	
T 11 (2)	fibrosis) and F4 (cirrhosis)	
Table (3):	HCV DAAs approved in Europe in 2018	107
Table (4):	IFN-free, ribavirin-free combination	
	treatment regimens available for treatment	100
Table (5):	naïve patients Treatment recommendations for patients	100
rable (5):	with chronic hepatitis C without cirrhosis,	
	including treatment-naïve patients	109
Table (6):	Treatment recommendations for patients	100
Table (0).	with chronic hepatitis C with compensated	110
Table (7):	Commonly used regimen of treatment for	110
20020 (0)0	HCV by Egyptian national control program	129
Table (8):	Scoring	
Table (9):	Interpretation	
Table (10):	Materials supplied in the Test Kit	
Table (11):	Characteristics of studied subjects with	
	regard to age	146
Table (12):	Characteristics of studied subjects with	
	regard to gender	147
Table (13):	Classification of studied subjects in fibrosis	
	according to APRI and FIB 4	147
Table (14):	Comparison between patients before and	
	12weeks after treatment as regard CBC	148
Table (15):	Comparison between patients before and 12	
	weeks post treatment as regard liver profile:	
	Fib-4 and APRI among the studied groups:	155
	Serum autotaxin (mg/L) among the studied	1
	groung	157

Tist of Tables cont...

Table No.	Title	Page No.
Table (18):	Comparison in serum autotoxin levels before and 12 weeks post treatm	ent as
Table (19):	regard sex	genicity
Table (20):	Correlations of serum autotoxin characteristics of the patients:	n and
Table (21):	Comparison among the studied cases and 12weeks after treatment as regardless.	rd liver
Table (22):	fibrosis:	APRI garding
T 11 (00)	serum autotaxin (mg/L):	
Table (23):	Diagnostic performance of serum au in predicting Fibrosis:	
Table (24):	Comparison among the studied cases and 12weeks after treatment as regard	
	fibrosis according serum autotoxin:	
Table (25):	Diagnostic characteristics of basal autotoxin ≥1.5 mg/L in predicting fibrosis:	g basal

List of Figures

Fig. No.	Title	Page No.
Figure (1):	HCV sourses of transmission infection by United States.	
Figure (2):	Hepatitis C in Egypt	
Figure (3):	Transmission of HCV in Egypt am	
	population	_
Figure (4):	HCV genome	29
Figure (5):	Mechanism of liver fibrosis	35
Figure (6):	Liver regeneration and the epithelia	al to
	mesenchymal transition	
Figure (7)	: Hepatic stellate cells and liver fibro	sis47
Figure (8):	The HCV-cAG	
Figure (9):	Viral Entry: target for antiviral there	ару60
Figure (10):	Chronological events related	the
	identifications of lysophosphatidic a	acid,
	ecto-nucleotide pyrophosphat	ase/
	phosphodiesterase	
Figure (11):	Biochemical pathways	
	lysophosphatidic acid synthesis	
	degradation	
Figure (12):	Isoforms of serum autotoxin	
Figure (13):	Physiological role of serum Autotaxii	
Figure (14):	Therapeutic targets of the H	
T' (18)	replication cycle	
Figure (15):	Hemoglobin level 12 weeks p	
	treatment among the studied gro	-
E: (10).	significantly decreased	
Figure (16):	Hemoglobin level 12weeks p	
	treatment among the studied gro	_
Figure (17):	significantly decreased TLC among the studied groups be	
Figure (17):	and 12 weeks post treatment	
	significantly changed	
	Digititicating citatigea	

Tist of Figures cont...

Fig. No.	Title F	Page No.
Figure (18):	Platelets among the studied grous show increase in platelet 12 weeks potreatment	st-
Figure (19):	Platelets among the studied grous show increase in platelet 12 weeks po	ips st-
Figure (20):	AST among the studied groups decrea	ise
Figure (21):	12 weeks post-treatment	ise
Figure (22):	ALT among the studied groups decreased 12 weeks post-treatment	ise
Figure (23):	ALT among the studied groups decrea 12 weeks post-treatment	ase
Figure (24):	non-significantly changed	155
Figure (25):	Fib-4 among the studied groups she significant decrease 12 weeks after t end of treatment	he
Figure (26):		ow
Figure (27):		led
Figure (22).	groups show significant decrease of level before and 12 weeks after treatment. Comparison according to sex regardi	157
	serum autotoxin	158
J	echogenicity regarding serum autotoxic Correlations of baseline seru	in159
J	autotaxin and INR	161
•	autotaxin and DT	161

Tist of Figures cont...

Fig. No.	Title Pa	ge No.
Figure (32):	Correlations of baseline serum	
Figure (33):	autotaxin and Fib-4 score Correlations of baseline serum	l
Figure (34):	autotaxin and APRI scoreLiver fibrosis among the studied cases	3
Figure (35):	studied groups according APRI score Comparison according to liver fibrosis	3
	before treatment regarding serum autotoxin	164
Figure (36):	Liver fibrosis by serum autotaxin estimation among the studied cases	
Figure (37):	ROC curve basal serum autotaxin in predicting basal Fibrosis	
Figure (38):	Diagnostic characteristics of basal serum autotoxin ≥1.5 mg/L in	
	predicting liver fibrosis	

Tist of Abbreviations

Abb.	Full term
aa	Amino acid
	A Disintegrin and Metalloproteinase with ThromboSpondin type
apo	Apolipoprotein
apoB	$A polipoprotein\ B$
apoE	A polipo protein
ATX	Autotaxin
BMI	Body mass index
CLDN1	Claudin-1
DAAs	Direct-acting antivirals
DALY	Disability-adjusted life years
DC-SIGN	Dendritic cell-specific intercellular adhesion molecule 3 grabbing non integrin
<i>ECM</i>	Extracellular MATRIX
<i>EGF</i>	Epidermal growth factor
Ennp	. ecto-nucleotide pyrophosphatase/phosphodiesterase
<i>GAG</i>	Gly cosamino gly can
<i>GGT</i>	Glutamyltransferase
<i>GPAT</i>	$Gly cerophosphate\ a cyltrans fer as e$
HAI	Histology activity index
HCC	$He pato cellular\ carcinoma$
HCV	Hepatitis C virus
HCV	Hepatitis C virus
HCVcc	$Cell\ culture$ -derived HCV
HCV-LP	HCV-like particles
HCVpp	$HCV\ pseudoparticles$

Tist of Abbreviations cont...

Abb.	Full term
HDL	. High-density lipoprotein
	. Human immunodeficiency virus
	. Hypervariable region-1
	. Low-density lipoprotein
LDLR	
	. Lysophosphatidic acid
	. DC-SIGNr, liver and lymph node specific
Lyso PLD	. Lysophospholipase D
<i>MAGK</i>	. Monoacylglycerol kinase
MELD	. Model for End-Stage Liver Disease
<i>MMPs</i>	. Matrix metalloproteinases
<i>MOH</i>	. Egyptian Ministry of Health
<i>MSM</i>	. Men who have sex with men
<i>NIs</i>	. Nucleotide inhibitors
NNIs	. Non-nucleotide inhibitors
NOS2	. Nitric oxide synthase 2
<i>NOX</i>	. NADPH oxidase
<i>NUC</i>	. C-terminal nuclease-like
PAI-1	. Plasminogen activator inhibitor 1
PDE	. Phosphodiesterase
<i>PDGF</i>	. Platelet-derived growth factor
PegIFN	. Pegylated interferon
PI3Ks	. Phosphoinositide 3-kinases
ROS	. Reactive oxygen species
siRNA	. Small interfering RNA
<i>SMB</i>	. Somatomedin B-like

Tist of Abbreviations cont...

Abb.	Full term
SR-BI	Scavenger receptor class B type I
	Sustained virological response
TE	Transient elastography
TGF-beta-1	Transforming growth factor beta-1
TIMPS	Metalloproteinases
<i>UPA</i>	Uroplasminogen activator
VEGF	Vascular endothelial growth factor
<i>VLDL</i>	Very low-density lipoprotein
WHO	World Health Organization
<i>YLD</i>	Years of life lost due to disability
YLL	Years of life lost due to premature death

Introduction

epatitis C virus (HCV) infection is a major cause of chronic liver disease, Worldwide it is estimated that 185 million people are chronically infected with Hepatitis C virus (HCV), with 3-4 million new infections per year and over 350,000 deaths due to HCV-related liver disease each year (Gower et al., 2016).

The impact of HCV infection is highly variable, ranging from minimal effects to chronic hepatitis, advanced fibrosis, cirrhosis, decompensated cirrhosis and hepatocellular carcinoma. Chronic HCV infection may induce also severe extra-hepatic complications (*Maasoumy and Wedemeyer*, 2016).

The primary goal of HCV therapy is to cure the infection, i.e. to achieve a sustained virological response (SVR) defined as undetectable HCV RNA 12 weeks (SVR12) or 24 weeks (SVR24) after treatment completion. An SVR corresponds to a cure of the HCV infection, with a very low chance of late relapse (*Bruno et al.*, 2016).

An SVR is generally associated with normalization of liver enzymes and improvement or disappearance of liver necro-inflammation and fibrosis in patients without cirrhosis. Patients with advanced fibrosis (METAVIR score F3) or cirrhosis (F4) remain at risk of life-threatening complications. However, hepatic fibro-sis may regress and the risk of

complications such as hepatic failure and portal hypertension is reduced after an SVR (Nahon et al., 2017).

Direct-acting antivirals (DAAs), the new interferon-free therapy, have been revolutionary in the treatment of hepatitis C. Previously, the disease was treated with pegylated interferon (PegIFN) combined with ribavirin. Direct-acting antivirals comprise four groups of medical substances which are mixed together (also with ribavirin) depending on the genotype of the hepatitis C virus and accompanying liver cirrhosis or other diseases. The groups are:

- 1. NS3/4A protease inhibitors glecaprevir, paritaprevir, voxilaprevir, grazoprevir,
- 2. Nucleoside and nucleotide NS5B polymerase inhibitors sofosbuvir,
- 3. NS5A inhibitors ombitasvir, pibrentasvir, daclatasvir, elbasvir, ledipasvir, velpatasvir,
- 4. Non-nucleoside NS5B polymerase inhibitors dasabuvir.

Invasive and noninvasive methods are used to monitor liver fibrosis. Invasive liver biopsies are difficult to undertake regularly because of the risk of bleeding, the length of hospitalization required to manage these risks, and the associated costs. Transient elastography (TE) and blood sampling to determine the fibrosis marker levels are less-invasive liver fibrosis monitoring methods (*Wang et al.*, 2009).

Autotaxin (ATX) is a secreted enzyme originally discovered in conditioned medium from A2058 human melanoma cell cultures.ATX has an important enzymatic function in converting lysophosphatidylcholine to lysophosphatidic acid (LPA), which has various physiological roles. LPA also stimulates the proliferation and contractility of hepatic stellate cells. ATX is present in serum and is metabolized by liver sinusoidal endothelial cells (*Reynaert et al.*, 2002).

Liver fibrosis reduces the capacity to metabolize ATX, resulting in increases in the ATX level in serum. ATX has been shown to be useful as a serum marker for determining the fibrosis stage in CHC patients. In addition, ATX is suggested to be useful as an indicator of the severity of liver disease and for determining the prognosis of cirrhotic patients and HCC recurrence in combination with the levels of LPA receptors (*Enooku et al.*, 2016).