

ENHANCING ACTIVE RADIAL DISTRIBUTION NETWORKS BY OPTIMAL SIZING AND PLACEMENT OF DG UNITS USING MODIFIED EVOLUTIONARY ALGORITHM

By

Mohamed Abdelbadea Abdelghany Hassan

A thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

ENHANCING ACTIVE RADIAL DISTRIBUTION NETWORKS BY OPTIMAL SIZING AND PLACEMENT OF DG UNITS USING MODIFIED EVOLUTIONARY ALGORITHM

By

Mohamed Abdelbadea Abdelghany Hassan

A thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Doaa Khalil IbrahimDr. Tarek Abdelbadea BoghdadyElectrical Power Engineering DepartmentElectrical Power Engineering DepartmentFaculty of Engineering, Cairo UniversityFaculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2019

ENHANCING ACTIVE RADIAL DISTRIBUTION NETWORKS BY OPTIMAL SIZING AND PLACEMENT OF DG UNITS USING MODIFIED EVOLUTIONARY ALGORITHM

By

Mohamed Abdelbadea Abdelghany Hassan

A thesis submitted to the
Faculty of Engineering, Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee: Prof. Dr. Doaa Khalil Ibrahim Prof. Dr. Hussein Abd El Khalik Attia Prof. Dr. Ebtisam Mostafa Mohamed Saied Faculty of Engineering at Shoubra, Benha University Thesis main advisor Internal Examiner External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

Engineer: Mohamed Abdelbadea Abdelghany

Date of Birth: 02 / 04 / 1986 Nationality: Egyptian

E-mail: mabdelbadea24@gmail.com

Phone: +201227022813

Address: El abassia – Cairo – Egypt

Registration Date: 01 / 10 / 2015

Awarding Date: / /

Degree: Master of Science

Department: Electrical Power and Machines Department

Supervisors: Prof. Dr. Doaa Khalil Ibrahim

Dr. Tarek Abdelbadea Boghdady

Examiners: Prof. Dr. Doaa Khalil Ibrahim (Main Thesis Advisor)

Prof. Dr. Hussein Abd El Khalik Attia (Internal examiner)
Prof. Dr. Ebtisam Mostafa Mohamed Saied (External examiner)

Faculty of Engineering at Shoubra, Benha University

TITLE OF THESIS: ENHANCING ACTIVE RADIAL DISTRIBUTION NETWORKS BY OPTIMAL SIZING AND PLACEMENT OF DG UNITS USING MODIFIED EVOLUTIONARY ALGORITHM

Key Words: Crow Search Algorithm (CSA), Distributed generation (DG), Multiobjective Optimization, Sizing of DGs, Total Harmonic Distortion.

Summary:

In this thesis, two approaches are compared to get the optimal size and location of distributed generation units in radial distribution networks. The first approach is a single objective formulation which has the lowest power losses and makes an enhancement in the system voltage profile formulation with a voltage constraint of $\pm 5\%$. The second one is a multi-objective formulation, concentrates on minimizing power losses and also minimizing the voltage deviation, a weighted sum method is presented to create Pareto front and also to get the best compromise solution.

A new population-based metaheuristic optimization technique named Crow Search Algorithm (CSA), which is a nature-inspired algorithm based on the smart behavior of crows, is used. A modification on the evolutionary algorithm CSA is proposed using Gaussian and Cauchy density function has been applied on the two approaches to get the optimal size and location of DG.

Finally, the impact of adding DGs on system harmonics is investigated to ensure total harmonic distortion at all buses by simulating the whole radial distribution system using MATLAB /Simulink, where the installed DGs type is assumed inverter-based units. In case the limits are still ensured, the achieved solution is accepted. However, if the limits are violated, another solution is proposed for harmonics mitigation or cancellation.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references sections.

Name: Mohamed Abdelbadea Abdelghany Hassan	Date:
Signature:	

ACKNOWLEDGMENTS

First of all, Praise is to ALLAH to support and strengthen me in my work and completing my studies for the Master of Science (M.Sc.) degree.

I would like deeply to express my thanks and gratitude to my supervisors; Prof. Dr. Doaa Khalil Ibrahim and Dr. Tarek A. Boghdady, Electrical Power Engineering Department, Faculty of Engineering, Cairo University for their faithful supervision, enormous efforts, and their great patience during the period of the research.

Finally, I would like to thank my three way heart valve (My Mother, My Wife and My Daughter) for their great inspiration, kind support, and continuous encouragement.

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii TABLE OF CONTENTS iiii LIST OF TABLES vi LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS x ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8 2.3 Literature Review on Previous Studies for Optimal DG Planning 8
LIST OF TABLES vi LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS x ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
LIST OF FIGURES vii LIST OF SYMBOLS AND ABBREVIATIONS x ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
LIST OF SYMBOLS AND ABBREVIATIONS x ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
LIST OF SYMBOLS AND ABBREVIATIONS x ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
ABSTRACT xiv CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
CHAPTER (1): INTRODUCTION 1 1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
1.1 Overview 1 1.2 Problem Statement 2 1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
1.3 Thesis Objectives 2 1.4 Thesis Outline 2 CHAPTER (2): LITERATURE REVIEW ON OPTIMIZING DG UNITS 4 2.1. Introduction to Distributed Generation (DG) 4 2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
1.4 Thesis Outline
2.1. Introduction to Distributed Generation (DG)42.1.1 DG Definition42.1.2 DG Technology52.1.3 DG Benefits62.2 Optimal Allocation of DG (OADG) Problem62.2.1 Methods of Planning62.2.2 Planning Variables72.2.3 Nature of the Load8
2.1. Introduction to Distributed Generation (DG)42.1.1 DG Definition42.1.2 DG Technology52.1.3 DG Benefits62.2 Optimal Allocation of DG (OADG) Problem62.2.1 Methods of Planning62.2.2 Planning Variables72.2.3 Nature of the Load8
2.1. Introduction to Distributed Generation (DG)42.1.1 DG Definition42.1.2 DG Technology52.1.3 DG Benefits62.2 Optimal Allocation of DG (OADG) Problem62.2.1 Methods of Planning62.2.2 Planning Variables72.2.3 Nature of the Load8
2.1.1 DG Definition 4 2.1.2 DG Technology 5 2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
2.1.3 DG Benefits 6 2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
2.2 Optimal Allocation of DG (OADG) Problem 6 2.2.1 Methods of Planning 6 2.2.2 Planning Variables 7 2.2.3 Nature of the Load 8
2.2.1 Methods of Planning62.2.2 Planning Variables72.2.3 Nature of the Load8
2.2.2 Planning Variables72.2.3 Nature of the Load8
2.2.3 Nature of the Load
2.3 Literature Review on Previous Studies for Ontimal DG Planning
2.5 Electature Review on Frevious Studies for Optimal DO Hamming
2.3.1 Optimal DG Planning for Loss Minimization
2.3.1.1 DG Planning for Power Loss Minimization
2.3.1.2 DG Planning for Energy Loss Minimization9
2.3.2 Optimal DG Planning for Voltage Stability Improvement
2.3.3 Optimal DG Planning for Multi-Objective Optimization
CHAPTER (3): PROBLEM FORMULATION FOR DG SIZING AND
ALLOCATION
3.1. Load Flow Analysis
3.1.1. Load Flow Study Using Backward/Forward Sweep Method
3.1.2 Implementation of DG into Load Flow

3.2.1 Single Objective Optimization	16
3.2.2 Multi-Objective Optimization	17
3.2.2.1 Pareto Optimality Principle	17
3.3. Applied Formulation for Optimum Size & Location of DGs	17
3.3.1 Objective Function for Minimizing Power Losses	18
3.3.2 Objective Function for Minimizing Total Voltage Deviation	18
3.3.3 Applied Multi-Objective Function formulation	18
3.3.4 Applied Single-Objective Function formulation	19
3.4. Applied Constraints	19
3.4.1 Equality Constraint	19
3.4.2 Inequality Constraints	19
3.5. Economical and Voltage Deviation Indices	20
3.6. Evaluating the Impact of DG on the Total Harmonic Distortion.	21
CHAPTER (4): IMPLEMENTING MODIFIED CROW SEAR	
4.1. Overview on Crow Search Algorithm	
8	
4.1.1 The Steps-Wise Procedure for the Implementation of CSA	
4.1.2 Effect of change of parameters on the performance of CSA	
4.2 Proposed Modification on CSA	
4.2.1 Gaussian (Normal) Density Function	
4.2.2 Cauchy Density Function 4.2.3 Performance of the Modified CSA for Test Functions	
4.2.3 Performance of the Woulfied CSA for Test Functions	31
CHAPTER (5): RESULTS AND DISCUSSION	
5.1 Tested IEEE 33-Bus System	
5.2 Formulation for DG Sizing and Placement	
5.3 Results of Multi-Objective Formulation	
5.3.1 Optimal DG Sizing and Placement using CSA	36
5.3.1.1 Installing Single DG	36
5.3.1.2 Installing Multiple DG Units	
5.3.2 Results of Optimal DG Sizing and Placement using CSA-G	
5.3.2.1 Installing Single DG	41
5.3.2.2 Installing Multiple DG Units	
5.3.3 Results of Optimal DG Sizing and Placement using CSA-C	
5.3.3.1 Installing Single DG	
5.3.3.2 Installing Multiple DG Units	
5.3.4 Discussion of Results of Multi-objective Formulation	
5.3.5 Examining the Proposed Modification on CSA for Multi-objective for	ormulation50

5.4 In	vestigating the Voltage's Total Harmonic Distortion <i>THDv</i>	53
5.4.1	1 Validation of Simulink Model of IEEE 33-bus RDS	53
5.4.2	2 Results of Investigating <i>THDv</i>	54
5.5 Re	esults of Single Objective Function	55
5.5.	1 Results of Optimal DG Sizing and Placement using CSA	56
5.5.2	2 Results of Optimal DG Sizing and Placement using CSA-G	58
5.5.3	3 Results of Optimal DG Sizing and Placement using CSA-C	60
5.5.4	4 Discussion of Results of Single objective Formulation	63
5.5.5	5 Results of Investigating THDV	64
6.1.	TER (6): CONCLUSIONS AND FUTURE WORK Conclusions	66
REFER	RENCES	68
PUBLISHED WORK		73
APPEN	NDIX (A): Data for the IEEE 33-bus test RDS	74
APPEN	NDIX (B): Simulink Model for the IEEE 33-bus test RDS	76
APPEN	NDIX (C): MATLAB M-FILE for implementing Crow Se	earch Algorithm80

LIST OF TABLES

Table 2.1: DG ratings5
Table 2.2: Characteristics of different four DG types
Table 3.1: Voltage distortion limits according to IEEE Std. 519 TM -201421
Table 4.1: Four well-known benchmark test functions (formulation, search range and
optimal value)31
Table 4.2: Performance of CSA and modified CSA for benchmark test functions 32
Table 5.1: Achieved solutions using CSA for single and multiple DG units38
Table 5.2: Achieved solutions using CSA-G for single and multiple DG units
Table 5.3: Achieved solutions using CSA-C for single and multiple DG units
Table 5.4: Investigating modified CSA performance over some other methods 52
Table 5.5: Simulink load flow results for base case compared with backward/forward
sweep load flow54
Table 5.6: Impact of DGs placement using CSA on power loss for single objective
formulation56
Table 5.7: Impact of DGs placement using CSA on minimum bus voltage for single
objective formulation56
Table 5.8: Impact of DGs placement using CSA-G on power loss for single objective
formulation
Table 5.9: Impact of DGs placement using CSA-G on minimum bus voltage for single
objective formulation
Table 5.10: Impact of DGs placement using CSA-C on power loss for single objective
formulation
Table 5.11: Impact of DGs placement using CSA-C on minimum & maximum bus
voltage for single objective formulation
Table 5.12: Estimated <i>THDv</i> when adding DG units based on single objective
formulation using CSA-G64

LIST OF FIGURES

Figure 2.1: Distributed generation technologies and types calssification	5
Figure 2.2: DG integration benefits	6
Figure 2.3: Different approaches for solving OADG problem	7
Figure 3.1: Sample distribution system	13
Figure 3.2: Flowchart for backward forward sweep method	15
Figure 3.3: A part of RDS considering DG	16
Figure 3.4: Pareto optimal front	17
Figure 4.1: The crow i reposition process in CSA (a) $fl < 1$ and (b) $fl > 1$	24
Figure 4.2: CSA pseudo code	25
Figure 4.3: Optimization scheme using CSA	27
Figure 4.4: Gaussian and Cauchy probability density functions	29
Figure 4.5: Optimization scheme using the CSA-G & CSA-C	30
Figure 4.6: Random numbers of Gaussian and Cauchy distributions	31
Figure 4.7: Convergence rate for F2 function	32
Figure 4.8: Convergence rate for F2 using CSA-G with different Nc	33
Figure 5.1: Single line diagram of IEEE 33-bus RDS	34
Figure 5.2: Voltage profile without DG	35
Figure 5.3: Line sections power losses without DG	35
Figure 5.4: Compromised solution using CSA for integrated one DG	36
Figure 5.5: Compromised solution using CSA for integratind two DGs	37
Figure 5.6: Compromised solution using CSA for integratind three DGs	37
Figure 5.7: Power loss reduction (%) when applying single and multiple I	OG units
using CSA	39
Figure 5.8: Voltage level at each bus when applying single and multiple l	OG units
using CSA based on multi-objective formulation compared to base	e case 40
Figure 5.9: Compromised solution using CSA-G for integrating one DG	41
Figure 5.10: Compromised solution using CSA-G for integratind two DGs	42
Figure 5.11: Compromised solution using CSA-G for integratind three DGs	42
Figure 5.12: Power loss reduction (%) by applying single and multiple DG ur	nits using
CSA-G	43

Figure 5.13: Voltage level at each bus when applying single and multiple DG units
using CSA-G based on multi-objective formulation compared to base case
44
Figure 5.14: Compromised solution using CSA-C for integratind one DG45
Figure 5.15: Compromised solution using CSA-C for integratind two DGs
Figure 5.16: Compromised solution using CSA-C for integratind three DGs
Figure 5.17: Power loss reduction (%) when applying single and multiple DG units
using CSA-C47
Figure 5.18: Voltage level at each bus when applying single and multiple DG units
using CSA-C based on multi-objective formulation compared to base case
48
Figure 5.19: Power losses and voltage deviation for all studied cases using multi-
objective formulation
Figure 5.20: Economical index versus total DG capacity for all studied cases using
multi-objective formulation50
Figure 5.21: Convergence curve of CSA-G for compromised solution A for one DG
unit50
Figure 5.22: Comparison of voltage profile for IEEE 33 bus RDS53
Figure 5.23: Comparison of branch power losses for IEEE 33 bus RDS54
Figure 5.24: Impact of installing PV-based DGs (based on CSA-G) on THDV 55
Figure 5.25: Voltage level at each bus when applying single and multiple DG units
using CSA based on single objective formulation compared to base case 57
Figure 5.26: Voltage level at each bus when applying single and multiple DG units
using CSA-G based on single objective formulation compared to base case
59
Figure 5.27: Voltage level at each bus when applying single and multiple DG units
using CSA-C based on single objective formulation compared to base case
62
Figure 5.28: Power losses and voltage deviation for all studied cases of single
objective formulation63
Figure 5.29: Economical index versus DG sizes for all studied cases using single
objective formulation63

Figure A.1: Single line diagram of IEEE 33-bus RDS	76
Figure B.1: Simulink model for IEEE 33-bus RDS	.76
Figure B.2: Screen shoot of connecting buses and loads	.77
Figure B.3: Inserting the branch data (resistance and reactance)	.77
Figure B.4: Inserting the bus data (active and reactive power)	.78
Figure B.5: Inverter based DG model	.78
Figure B.6: Adjusting the setting of the PV array according to the DG size	.79
Figure B.7: FFT voltage analysis	. 79

LIST OF SYMBOLS AND ABBREVIATIONS

• Symbols

AP : Awareness probability

f(x) : Objective function

Fl : Flight length

I(l): The current flowing in line l

 I_i : Magnitude of branch current

 $I_{max}(l)$: Maximum current carrying capacity of line l

 L_B : Lower limit of the variable

 N_c : Flock size

No_b : The total number of buses

No_lines : The total number of branch lines

 $P_{D,i}^{with_DG}$: Total load active power with DG at bus i

 $P_{D.i}^{without_DG}$: Total load active power without DG at bus i

 $P_{DG.i}$: Active power injected by DG at bus i

 P_{DG_k} : Active power penetrated by k_{th} DG unit

 $P_{DG_{max}}$: Maximum allowed output active power of k_{th} DG unit

 P_{DG_min} : Minimum allowed output active power of k_{th} DG unit

 P_{Li+1} : Active loads that are connected at node i+1

 Q_{Li+1} : Reactive loads that are connected at node i+1

 P_{i+1} : Effective real power flows from node i+1

 Q_{i+1} : Effective reactive power flows from node i+1

 P_{load} : Total active load of the system

 $P_{loss(i)}$: Real power losses of branch j

 $Q_{loss(i)}$: Reactive power losses of branch j

 P_{supply} : Active power supplied by the grid as the original primary source

 $P_{T_DG_max}$: Total maximum allowed output of all added DG units (*N* units)

 $P_{T_DG_min}$: Total minimum allowed output of all added DG units (N units)

 $P_{T loss}$: The total power loss of the system

 $P_{T_loss_{without\ DG}}$: The total real power loss for the system without DG

 $P_{T_loss_{with DG}}$: The total real power loss for the system with DG

 $Q_{D.i}^{with_DG}$: Total load reactive power with DG at bus i

 $Q_{D.i}^{without_DG}$: Total load reactive power without DG at bus i

 $Q_{DG.i}$: Reactive power injected by DG at bus i

 R_i : Resistance of branch j

rand : Random variable (between 0-1)

r_i : Random number with uniform distribution (between 0-1)

 THD_{ν} : Voltage total harmonic distortion

 U_B : Upper limit of the variable

Vi : The voltage of i_{th} bus

Vmax : Maximum accepted voltage at any bus (1.05 pu)

Vmin : Minimum accepted voltage at any bus (0.95 pu)

 V_{rated} : The rated bus voltage of the network (1.0 pu)

 w_1 : Weighting factor 1

 w_2 : Weighting factor 2

 μ : The mean or expectation of the distribution

 σ^2 : The variance

 δ_i : The voltage angel at node i