

INVESTIGATING THE EFFICIENCY OF AN INNOVATIVE GEOPOLYMER COMPOSITES AS REPAIRING MATERIAL FOR CONCRETE STRUCTURES

By

Salma Ahmed Saber Ahmed El Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

INVESTIGATING THE EFFICIENCY OF AN INNOVATIVE GEOPOLYMER COMPOSITES AS REPAIRING MATERIAL FOR CONCRETE STRUCTURES

By Salma Ahmed Saber Ahmed El Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Under the Supervision of **Prof. Dr. Mohamed Ismail Abdel Aziz Serag**

Professor of Properties and Strength of Materials Structural Engineering Department Faculty of Engineering, Cairo University

INVESTIGATING THE EFFICIENCY OF AN INNOVATIVE GEOPOLYMER COMPOSITES AS REPAIRING MATERIAL FOR CONCRETE STRUCTURES

By Salma Ahmed Saber Ahmed El Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Structural Engineering

Approved by the Examining Committee

Prof. Dr. Mohamed Ismail Abdel Aziz Serag (Thesis Main Advisor) Professor of Properties and Strength of Materials – Structural Engineering Department – Faculty of Engineering – Cairo University

Prof. Dr. Mohamed Mohsen El-Attar (Internal Examiner)
Professor of Properties and Strength of Materials – Structural Engineering
Department – Faculty of Engineering – Cairo University

Prof. Dr. Mohamed Adel Al-Gammal (External Examiner)
Professor of Properties and Strength of Materials – National Research
Center

Engineer'sName: Salma Ahmed Saber Ahmed El Sayed

Date of Birth: 4/02/1992 **Nationality:** Egyptian

E-mail: salmaahmed_92@hotmail.com

Phone: 002-0101-413-0027

Address: No. 47, Ahmed Qasem St., Nasr City, Cairo, Egypt.

Registration Date: 01/10/2015 **Awarding Date:** ./.../2019

Degree: Master of Science **Department:** Structural Engineering

Supervisors: Prof. Dr. Mohamed Ismail Abdel Aziz Serag

Examiners:

Prof. Dr. Mohamed Adel El-Gammal (External Examiner) Professor of Properties and Strength of Materials – National Research Center

Prof. Dr. Mohamed Mohsen El-Attar (Internal Examiner)

Prof. Dr. Mohamed Ismail Abdel Aziz Serag (Thesis Main Advisor)

Title of Thesis:

Investigating The Efficiency Of An Innovative Geopolymer Composites As Repairing Material For Concrete Structures

Key Words:

Geopolymer Composite; Repair; Bond; Pull out Test; Splitting Test

Summary:

In this research, for the first time in Egypt, geopolymer composite blend was used as repair material for concrete structures. Direct tensile test, splitting test, flexural test, pull out test and bond between concrete and steel test and were used to investigate the different composites efficiency compared with the available materials in the market. Very efficient blend was remarked gives a very comparable results compared with the available epoxy materials in the market.

Disclaimer

I hereby declare that this thesis is my own original work an	d that no part of i	t has
been submitted for a degree qualification at any other university of	or institute.	
I formbon de alone that I have annuantiataly a almost alone dead all	and bear and	1

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

To My Mother & Father,

The reason of what I become today,

The source of my success,

Thank you for your love, Support and Care.

To My Sisters, My Brothers & My Cousins

Thank you for your love, Support and Care.

To My Family

All my love and respect to you for your care, love and support.

To My Great Professor

Mohamed I. Serag

All my deep respect to you for teaching me, supporting me, inspiring me and for your deep effect on my way of thinking and on my life.

Acknowledgments

First and above of all, I have to thank **Allah** for this great chance I have right now. I thank god for providing me with the opportunity to meet such helpful and wonderful people those who helped me from the start of this thesis. All praises to Allah for giving me knowledge, strength, support and patience to present this work.

I would like to express my deepest sense of gratitude to my respectable Professor and Supervisor; **Prof. Dr. Mohamed I. Serag**; who offered me the honor to be one of his students. I thank him for his continuous advice, sincere guidance and encouragement throughout the course of this thesis. I also thank him for his valuable caring, endless patience and great effort to provide me with an excellent flourishing atmosphere for doing this research. In fact, working under his supervision was the most valuable and unforgettable experience I have got in my life.

I would like also to thank my colleagues especially Eng. Nouran El-Ouni, Eng. Shereen Fathy Darwish, Eng. Rania Samy, Eng. Passant Youssef, Eng. Aya Ashraf, Eng. Ahmed Saleh, Eng. Khaled Moustafa and Eng. Adel Abdel El Fattah for their encouragement.

I would like to thank my close friends. They are all my true treasure in my life starting of my childhood right now.

I would like to thank my real friend **Eng. Sara Ibrahim** for her love, encouragement and care. I also thank her for her great effort and continuous support.

I would like to thank my parents and family for being beside me, encourage me and praying for me to achieve my goals and for being always my source of success.

Finally, I would like to thank everyone help me, support and care to succeed and reach my goals.

Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGMENTS	III
LIST OF TABLES	VII
LIST OF FIGURES	VIII
ABSTRACT	XIII
CHAPTER1:INTRODUCTION.	1
1.1. GENERAL	1
1.4.1. CHAPTER 1: INTRODUCTION	2
1.4.2. CHAPTER 2: BACKGROUND & LITERATURE REVIEW	2
1.4.3. CHAPTER 3: EXPERIMENTAL PLAN	2
1.4.4. CHAPTER 4: RESULTS & DISCUSSION	2
1.4.5.CHAPTER5:SUMMARY, CONCLUSIONS AND RECOMMENDAT	TIONS3
CHAPTER 2 : BACKGROUND & LITERATURE REVIEW	
2.1. GENERAL: 2.1.1. THE PROBLEM 1 2.1.2. THE PROBLEM 2 2.2. GEOPOLYMERIZATION	4 5
2.2.1. COMPOSITES OF GEOPOLYMER CONCRETE:	
2.2.2. ROLE OF SOURCE MATERIAL	7
2.2.3. MIXING METHOD	8
2.2.4. CHEMISTRY: GEOPOLYMERIZATION MECHANISMS	9
2.2.5. ECONOMICAL BENEFITS	10
2.2.6. ROLE OF ALKALI METALS	11
2.3. PROPERTIES OF GEOPOLYMER MORTAR AS REPAIR MATERIAL	13 14 16 16 17 17
2.3.3.6. SiO ₂ /K ₂ O Effect	21

2.4. APPLICATIONS	21
2.4.1.GEOPOLYMER MORTAR AS A REPAIR MATERIAL FOR CO STRUCTURE	
2.4.2. GEOPOLYMER CONCRETE	24
2.4.3. EPOXY AS REPAIR FOR CONCRETE STRUCTURES	28
CHAPTER 3 : EXPERIMENTAL PROGRAM	31
3.1. GENERAL	31
3.2. EXPERIMENTAL PROGRAM	
3.2.1. OVERVIEW OF EXPERIMENTAL PROGRAM	31
3.2.2. CHARACTERIZATION OF USED MATERIALS	32
3.2.2.1. CEMENT	32
3.2.2.2. SAND	33
3.2.2.3. Course Aggregates	33
3.2.2.4. Water	34
3.2.2.5. SUPERPLASTICIZER	34
3.2.2.6. SLAG	35
3.2.2.7. METAKAOLIN	36
3.2.2.8. SILICA FUME	37
3.2.2.9. FLY ASH	38
3.2.2.10. SODIUM HYDROXIDE (NAOH)	39
3.2.2.11. SODIUM SILICATE (NA ₂ SIO ₃)	
3.2.3. SAMPLES PREPARATION	40
3.2.3.1. MIXTURE CONSTITUENTS	40
3.2.3.2. MIXING PROCEDURE	41
3.2.3.3. CASTING PROCEDURE	42
3.2.3.4. CURING	53
3.2.3.5. Testing	54
CHAPTER 4: RESULTS AND DISCUSSION	60
4.1. Introduction	60
4.2. TEST RESULTS	61
4.2.1. SPLITTING TEST RESULTS	61
4.2.2. PULL-OUT TEST RESULTS	62
4.2.3. BOND TEST RESULTS	64
4.2.4. DIRECT TENSILE TEST RESULTS	65
4.2.5. FLEXURAL TEST RESULTS	66
4.3.RELATIONSHIP BETWEEN CHEMICAL CONSTITUENTS AND D	IFFERENT
MECHANICAL PROPERTIES	
4.4. THE EFFECT OF CHEMICAL CONSTITUENTS ON SPLITTING STRENGTH	70
4.5. THE EFFECT OF CHEMICAL CONSTITUENTS ON PULL OUT STRENGTH	
4.6. THE EFFECT OF CHEMICAL CONSTITUENTS ON BOND STRENGTH	
4.7. THE EFFECT OF CHEMICAL CONSTITUENTS ON TENSILE STRENGTH	
4.8. THE EFFECT OF CHEMICAL CONSTITUENTS ON FLEXURAL STRENGTH	
4.9. CRACK PATTERN	84

4.9.1. SPLITTING TEST	84
4.9.2. PULL OUT TEST	86
4.9.3. BOND TEST	89
4.9.4. TENSILE TEST	91
4.9.5. FLEXURAL TEST	92
CHAPTER 5 : SUMMARY, CONCLUSIONS AND RECOMMEN	DATIONS94
5.1. SUMMARY	94
5.2. CONCLUSIONS	95
5.3. RECOMMENDATIONS	
REFERENCES	97
APPENDIX 1	101
APPENDIX 2.	102

List of Tables

Table 2.1: The difference between dry and wet mixing methods [3]	9
Table 2.2: Bond strength and failure mode of repair materials [17]	17
Table 2.3: Test Slip vs Bond Stresses[4]	25
Table 3.1: Ordinary Portland cement properties	32
Table 3.2: Sieve Analysis of fine aggregate	33
Table 3.3: The physical properties of the used materials	33
Table 3.4: Chemical and Physical Analysis characteristics of superplasticizer	35
Table 3.5:Chemical composition of slag (XRF analysis)	36
Table 3.6: Chemical composition of Metakaolin (XRF analysis)	37
Table 3.7:Chemical composition of Silica Fume (XRF analysis)	38
Table 3.8: Chemical composition of Fly Ash (XRF analysis)	39
Table 3.9: Chemical composition of Sodium Hydroxide (XRF analysis)	39
Table 3.10: Chemical composition of Sodium Silicate (XRF analysis)	40
Table 3.11: Mixtures constituents (% of weight)	40
Table 3.12: Mix constituents (% of weight)	40
Table 4.1: Chemical analysis of geopolymer composite blends	69

List of Figures

Figure 2.1: Past, current and future estimate on of the amount of the world cement
production [21]4
Figure 2.2: Epoxy resin and its Hardener5
Figure 2.3: Geopolymer binder presentation flow chart (Dry and Wet mixing method)
[3]9
Figure 2.4: Geopolymerization process [23]
Figure 2.5: The effect of sodium hydroxide concentration on the flow(%) using different
% of super-plasticizer and Ca(OH) ₂ [24]
Figure 2.6: The effect of of metakaolin substituted slag on GPMs early compressive
strength. [18]
Figure 2.7: Calcium to silicate content effect on strength development at different curing
temperatures [18]
Figure 2.8: PWA(%) effect on compressive strength with curing age 4h in oven [14]. 15
Figure 2.9: The effect of NaOH molarity on compression strength with different
sand/binder ratio at different curing ages [32]
Figure 2.10: Bending stress of beams repaired with RM or GPM [29]17
Figure 2.11: GPM flexural strength [8]
Figure 2.12: Temperature dependent bond strength of various geopolymers [35]18
Figure 2.13: Si/Al effect on GPM bond strength [35].
Figure 2.14: GPM or RM shear bond strength [29]
Figure 2.15: Shear bond strength between GPP or epoxy and concrete substrate [28].20
Figure 2.16: Shear bond strength between GPP or epoxy and concrete substrate [35]21
Figure 2.17: GPM and RM shear bond strength [29]

Figure 2.18: PCC beam bending stress filled with RM or GPM as a repair material [29].
Figure 2.19: Mechanical Strength of geopolymer mortar [12]23
Figure 2.20: Repair rate and Compressive strength of rectangular prism concrete
specimens [12]
Figure 2.21: Repair rate and Flexural strength of rectangular prism concrete specimens
[12]24
Figure 2.22: Influence of curing time on the repairing effect of geopolymer paste [12].
Figure 2.23: Relation between Compressive Strength and Bond Stress for PPCC and GPC
[4]
Figure 2.24: Comparison of PPCC and GPC Bond Strength [4]
Figure 2.25: Comparison of PPCC and GPC Bond Strength [4]
Figure 2.26: Diameter Effect on PPCC and GPC Bond Strength [4]27
Figure 2.27: Repaired and Control beams deflection. [1]
Figure 2.28: Repaired and Control beams strains. [1]
Figure 2.29: Relationship between deflection and tensile stress [1]30
Figure 3.1:Dolomite aggregate sieve analysis in comparison with Egyptian Standard
Specifications
Figure 3.2: Schematic representation of a mode of action of naphthalene sulphonate. 35
Figure 3.3: Slag
Figure 3.4: Metakaolin
Figure 3.5: Silica Fume
Figure 3 6: Fly Ash

Figure 3.7: Sodium Hydroxide	39
Figure 3.8: The mixer	41
Figure 3.9: Control group	43
Figure 3.10: Beams with artificial crack	43
Figure 3.11: Cracks filled with geopolymer mix	44
Figure 3.12: Cracks filled with kemapoxy	44
Figure 3.13: Cube with plastic tube and fixing steel frame	45
Figure 3.14: Cube with the center hole	46
Figure 3.15: The hole filled with geopolymer mix	46
Figure 3.16: The hole filled with kemapoxy	47
Figure 3.17: Concrete cylinder was divided by plastic sheet	47
Figure 3.18: Cylinders divided into two halves	48
Figure 3.19: Cylinders welded with geopolymer mixes	48
Figure 3.20: Cylinders welded with kemapoxy	49
Figure 3.21:Concrete cylinders for tension test	49
Figure 3.22: Concrete cylinders welded with geopolymer mix	50
Figure 3.23: Concrete cylinders welded with kemapoxy	50
Figure 3.24: Cylinder with plastic tube and fixing steel frame	51
Figure 3.25: Cylinders with the center hole	52
Figure 3.26: The hole filled with geopolymer mix	52
Figure 3.27: The hole filled with kemapoxy	53
Figure 3.28: Water basin for concrete curing	53
Figure 3.29: Tinius Olsen Universal Testing Machine	54
Figure 3.30: SHIMADZU Universal Testing Machine	55
Figure 3.31: SHIMADZU Universal Testing Machine	56
Figure 3.32: SHIMADZU Universal Testing Machine	57

Figure 3.33: Tinius Olsen Universal Testing Machine
Figure 3.34: SHIMADZU Universal Testing Machine
Figure 4.1: Splitting strength of each composite for concrete grade C350 kg/m³61
Figure 4.2: Splitting strength of each composite for concrete grade C450 kg/m ³ 61
Figure 4.3: Pull-Out strength of each composite for concrete grade C350 kg/m³62
Figure 4.4: Pull-Out strength of each composite for concrete grade C450 kg/m³63
Figure 4.5: Bond strength of each composite for concrete grade C350 kg/m³64
Figure 4.6: Bond strength of each composite for concrete grade C450 kg/m³64
Figure 4.7: Tensile strength of each composite for concrete grade C350 kg/m³65
Figure 4.8: Tensile strength of each composite for concrete grade C450 kg/m³66
Figure 4.9: Flexural strength of each composite for concrete grade C350 kg/m³67
Figure 4.10: Flexural strength of each composite for concrete grade C450 kg/m³67
Figure 4.11: Effect of silicon dioxide on splitting strength of composite blends70
Figure 4. 12: Effect of aluminum oxide on splitting strength of composite blends71
Figure 4.13: Effect of calcium oxide on splitting strength of composite blends71
Figure 4.14: Effect of SiO ₂ /Al ₂ O ₃ on splitting strength of composite blends72
Figure 4.15: Effect of silicon dioxide on pull-out strength of composite blends73
Figure 4.16: Effect of aluminum oxide on pull-out strength of composite blends73
Figure 4.17: Effect of calcium oxide on pull-out strength of composite blends74
Figure 4.18: Effect of SiO ₂ /AL ₂ O ₃ on pull-out strength of composite blends74
Figure 4.19: Effect of silicon dioxide on bond strength of composite blends75
Figure 4.20: Effect of aluminum oxide on bond strength of composite blends76
Figure 4.21: Effect of calcium oxide on bond strength of composite blends76
Figure 4.22: Effect of SiO ₂ /AL ₂ O ₃ on bond strength of composite blends77