IMPROVING MICROBIAL INOCULANTS QUALITY FOR COMMERCIAL USES

By

Haitham Shawky Mohamad Mohamad

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Cairo Univ., 2012

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Microbiology)

Department of Microbiology
Faculty of Agriculture
Cairo University
EGYPT

2019

Vice Dean of Graduate Studies

APPROVAL SHEET

IMPROVING MICROBIAL INOCULANTS QUALITY FOR COMMERCIAL USES

Ph.D. Thesis In Agric. Sci. (Agricultural Microbiology)

By

Haitham Shawky Mohamad Mohamad

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Cairo Univ., 2012

Approval Committee

Dr. WAFAA MOHAMED ABD EL-RAHEM	
Professor of Environmental Microbiology, National Research Center (NRC)	
Dr. MOHAMMED ABD ELALEEM ALI	
Professor of Microbiology, Fac. Agric., Cairo University	
Dr. SAYED ABD EL-KADER SAYED	
Professor of Biochemistry, Fac. Agric., Cairo University	
Dr. MOHAMMED ZAKERIA SEDIK	
Duofessan of Microbiology, Fac. Agric. Coine University	

Date: 28/8/2019

SUPERVISION SHEET

IMPROVING MICROBIAL INOCULANTS QUALITY FOR COMMERCIAL USES

Ph.D. Thesis
In
Agric. Sci. (Agricultural Microbiology)

By

Haitham Shawky Mohamad Mohamad

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ., 2003 M.Sc. Agric. Sci. (Microbiology), Fac. Agric., Cairo Univ., 2012

SUPERVISION COMMITTEE

Dr. MOHAMMED ZAKERIA SEDIK

Professor of Microbiology, Fac. Agric., Cairo University

Dr. SAYED ABD EL-KADER SAYED

Professor of Biochemistry, Fac. Agric., Cairo University

Dr. HASSAN MOAWAD ABD ELAAL

Professor of Microbiology, National Research Centre (NRC)

Name of candidate: Haitham Shawky Mohamad Mohamad Degree: Ph.D. Title of Thesis: Improving Rhizobial Inoculants Quality For Commercial Uses.

Supervision: Dr. Mohammed Zakeria Sedik Dr. Sayed Abd El-Kader Sayed Dr. Hassan Moawad Abd Elaal

Department: Agricultural Microbiology **Date:** 28/8/2019

ABSTRACT

Two hundred rhizobial isolates were obtained from root nodules, eighty from peanut, sixty from soybean, and sixty from pea. The three legumes are widely cultivated in different ecological areas covering sixteen Egyptian Governorates (AL-Ismailia, AL-Sharqia, AL-Dakahlia and AL-Qalyubia) in East Delta (Alexandria, Al-Behera and Kafr El sheikh) in West Delta (AL-Gharbia and AL-Monufia) in Middle Delta (AL-Giza, AL-Fayoum, Bani suef and AL-Menia) in Middle Egypt and (Assuit, Sohag and Aswan) in Upper Egypt.

The diversity of rhizobial isolates was assessed using several characterization techniques including growth rate on different growth media, reaction to salinity concentrations, temperature, pH, different antibiotics (IAR), and nitrogen fixation efficiency. DNA-PCR fingerprinting of the isolates was done using REP, ERIC and BOXA1 primers as well as fluorescence antibody (FA). A large percentage of the indigenous rhizobial population was efficient in fixing nitrogen. The study identified several efficient strains for each crop which can be recommended as inoculant strains to increase biological nitrogen fixation of the target legumes growing in soils of different ecological zones in Egypt including soils affected by high salinity and those exposed to high temperatures.

The study shows the diversity of rhizobial isolates of each legume and it identifies the best approach for tracking the inoculant strains using serological technique (FA) and/or molecular approach. This will be very valuable for further studies targeting inoculation success and competition for nodulation.

Keywords: *Rhizobium*, legumes crops, Nodulation, Nitrogen fixation, FA Molasses and DNA-PCR.

ACKNOWLEDGEMENT

I would like to express my sincere thanks and appreciation to **Dr. Hassan Moawad Abd ElAal,** Professor of Environmental Microbiology, Agricultural and Biological Research Division, National Research Centre (NRC) and **Dr. Mohammed Zakaria Sedik,** Professor of Microbiology, Fac. Agric., Cairo University for their great guidance and generous helping through the course of study, suggesting the topics of this thesis, supervision of the work as well as unlimited encouragement, valuable advices and stimulating.

My gratitude and deeply thanks to **Dr. Wafaa Mohammed Abd El Rahim,** Professor of Environmental Microbiology,
Agricultural and Biological Research Division, sincere help
guidance and stimulating criticism throughout the work in the
thesis.

Deep thanks to **Dr. Sayed Abd El-Kader**, Professor of Biochemistry, Fac. Agric., Cairo University for support, supervision and stimulating criticism throughout the work in the thesis.

My deep appreciation to the staff members of the Agric. Microbiology Dept. Fac. Agric., Cairo University and the authorities of the National Research Center for their generous support and help.

Special deep appreciation is given to my family and my friends for their help and encouragement.

CONTENTS	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Important of biological nitrogen fixation (BNF)	4
2. Contribution of BNF on global scale	5
3. Conditions necessary for successful function of BNF	
nitrogenase enzyme	6
4. Cultural properties and some nutritional requirements	
of rhizobia	8
5. Needing to Identification for rhizobial inoculation	8
6. Different types of rhizobial inoculants	12
7. Factors affecting rhizobial Inoculants Quality	18
8. Inoculant shelf life	20
9. Commercial production of high quality legume	
inoculants	21
10. Tools of studying rhizobial diversity	23
11. Competiveness of rhizobial strains as a crucial factor	26
in nodulation success	26
12. Taxonomy of rhizobia	28
MATERIALS AND METHODS	36 36
1. Isolation of rhizobia from legume nodule	
2. Characterization of rhizobial isolates	41
3. Symbiotic performance of rhizobial isolates	44
4. Biodiversity of peanut rhizobial isolates	46
RESULTS	54
1. Peanut nodulating rhizobia	54
2. Soybean nodulating rhizobia	93
3. Pea nodulating rhizobia	129
DISCUSSION	195
SUMMARY	209
REFERENCES	217
ARABIC SUMMARY	240
ANADIC SUIVINANT	

LIST OF TABLES

No.	Title
1.	The amounts of nitrogen fixed on global scale
2.	Sources of rhizobial isolates used in this study
3.	Isolation and phenotypic characterization of peanut
	nodulating rhizobia from different geographical zones of
	Egypt
4.	Utilization of carbon sources by peanut nodulating rhizobia
	isolated from different Geographical zones of
	Egypt
5.	Temperature, pH and salinity tolerance of rhizobia
	nodulating peanut in Egypt
6.	Intrinsic Antibiotic Resistance (IAR) of peanut nodulating
	rhizobia isolated from different geographical zones of
_	Egypt
7.	Symbiotic performance of peanut rhizobial isolates from
0	nodules collected from East Delta region
8.	Symbiotic performance of peanut rhizobial isolates from
0	nodules collected from West Delta region
9.	Symbiotic performance of peanut rhizobial isolates from
10.	nodules collected from Middle Delta region
10.	Symbiotic performance of peanut rhizobial isolates from nodules collected from Middle Egypt region
11.	Symbiotic performance of peanut rhizobial isolates from
11.	nodules collected from Upper Egypt region
12.	Molecular biodiversity of peanut rhizobial isolates using
12.	Rep-PCR technique
13.	Molecular biodiversity of peanut rhizobial isolates using
10.	Eric-PCR technique
14.	Molecular biodiversity of peanut rhizobial isolates using
	Box-PCR technique
15.	Fluorescent antibody (FA) staining peanut rhizobial
	isolates 35 and 79 using compared with peanut rhizobial
	isolates from East Delta
16.	Fluorescent antibody (FA) staining peanut rhizobial
	isolates 35 and 79 using compared with peanut rhizobial
	isolates from West Delta

17.	Fluorescent antibody (FA) staining peanut rhizobial isolates 35 and 79 using compared with peanut rhizobial	
	isolates from Middle Delta	91
18.	Fluorescent antibody (FA) staining peanut rhizobial isolates 35 and 79 using compared with peanut rhizobial	
	isolates from Middle and Upper Egypt	92
19.	Isolation and phenotypic characterization of soybean nodulating rhizobia from different geographical zones of	0.4
20	Egypt	94
20.	Results of soybean isolates test with different carbon	07
21.	Tomporature pH and calinity talarance of rhizahia	97
Z1.	Temperature, pH and salinity tolerance of rhizobia	103
22.	nodulating soybean in Egypt The Effect of four concentrations of different Antibiotics	103
<i>LL</i> .	on Soybean isolates	107
23.	Symbiotic performance of soybean rhizobial isolates from	107
23.	•	113
24.	nodules collected from East Delta region	113
<i>2</i> 4.	nodules collected from West Delta region	113
25.	Symbiotic performance of soybean rhizobia isolates from	113
23.	nodules collected from Middle Delta region	114
26.	Symbiotic performance of soybean rhizobia isolates from	114
20.	nodules collected from Middle Egypt region	114
27.	Symbiotic performance of soybean rhizobia isolates from	114
<i>_</i>	nodules collected from Upper Egypt region	115
28.	Molecular biodiversity of soybean nodulating rhizobial	113
20.	isolates using Rep primer	118
29.	Molecular biodiversity of soybean nodulating rhizobial	110
	isolates using ERIC primer	120
30.	Molecular biodiversity of soybean nodulating rhizobial	120
	isolates using BOXA1 primer	122
31.	Fluorescent antibody (FA) staining soybean rhizobial	
	isolates 83 and 103 using compared with peanut rhizobial	
	isolates from East Delta	126
32.	Fluorescent antibody (FA) staining soybean rhizobial	
	isolates 83 and 103 using compared with peanut rhizobial	
	isolates from West Delta	126
33.	Fluorescent antibody (FA) staining soybean rhizobial	
	isolates 83 and 103 using compared with peanut rhizobial	