

ENERGY EFFICIENT SMART WIRELESS SENSOR NETWORK FOR BORDER MONITORING

By

Islam Wagih Mahdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2019

ENERGY EFFICIENT SMART WIRELESS SENSOR NETWORK FOR BORDER MONITORING

By

Islam Wagih Mahdy

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electronics and Communications Engineering

Under the Supervision of

Prof. Shawky Z. Eid

Dr. Mohamed M. Elkhateb

Professor

Associate. Professor

Electronics and Electrical Communications Engineering

Electronic Engineering department

Faculty of engineering, Cairo University

Faculty of engineering,

Military technical college

Dr. Mohamed A. Refky

Assistant Professor

Electronics and Electrical Communications Engineering

Faculty of engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

ENERGY EFFICIENT SMART WIRELESS SENSOR NETWORK FOR BORDER MONITORING

By

Islam Wagih Mahdy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

IASTER OF SCIENCE In

Electronics and Communications Engineering

Approved by the Examining Committee:	
Prof .Dr. Shawky Zaki Eid, Thesis Main Ad	—— visor
Prof .Dr. Hanan Ahmed Kamal, Internal Exa	—— amin

Prof.Dr. Elsayed Mostafa Saad, External Examiner

Faculty of engineering, Helwan University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2019

Engineer's Name: Islam Wagih Mahdy

Date of Birth: 26/11/1978 **Nationality**: Egyptian

E-mail: Islamwagiheng@gmail.com

Phone: +201006727870

Address: EL Velal, Benha, Qalyobia

Registration Date: 1/10/2014 **Awarding Date**: -/-/2019

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Shawky Zaki Eid Dr. Mohamed A. Refky

Dr. Mohamed M. Elkhateb (military technival college)

Examiners:

Prof. Shawky Zaki Eid (Thesis main advisor)
Prof. Hanan Ahmed Kamal (Internal examiner)

Prof. Elsayed Mostafa Saad (External examiner) Faculty of

engineering, Helwan University

Title of Thesis:

Energy Efficient Smart Wireless Sensor Network for Border Monitoring

Key Words: Wireless sensor network, intrusion detection, fuzzy logic, Neuro-fuzzy, border monitoring.

Summary:

In this thesis, we firstly consider the power problem in wireless sensor network and solution for this problem through software and hardware architectures, secondly we survey the fuzzy logic controller and how it works and different types of the fuzzy logic, thirdly we define energy efficient smart protocol for border monitoring and classify the intruder by two different techniques, the first one is to reduce the monitoring cycle period without effecting the efficiency of the system and the second is the power gating technique to reduce the losing power due to switching and leakage current and voltage in inactive blocks in the circuit, finally we implement the system on arduino mega 2560 then the total saved power are measured and compared with the power without using these technique

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted foe a degree qualification at any other university or institute.

I further declare that I have appropriately all sources used and have cited them in references section.

Name:	Date:
Signature:	

Dedication

To the soul of my father, who is my source of inspiration.

To my beloved family, for its endless support.

Acknowledgements

In the name of Allah the most merciful the most gracious; all thanks to *Allah* the Lord of the Heavens and Earth and peace is upon Mohamed and his companions.

I would like to thank *Prof. Shawy Zaki Eid*, and D*r. Mohamed Refky*, and *Dr. Mohamed El Khateb* for their invaluable suggestions, dedicated guidance, and constant support that made this work possible.

I am most grateful to my family for their patience and love.

Table of Contents

LIST OF TABLES		VII
LIST OF FIGURES		VIII
NOMENCLATURE	• • • • • • • • • • • • • • • • • • • •	X
ABSTRACT	•••••	XII
CHAPTER 1: INTROI	DUCTION	1
1.1 Thesis objectiv	ves	1
	S	
CHAPTER 2: WIREL	ESS SENSOR NETWORKS	2
2.1 WSN D	esign Requirements	2
	re Architecture	
	e architectures for power reduction	
	ting protocols	
2.3.1.1	Sensor protocols for information via negotiation (SPIN)	
2.3.1.2	Directed diffusion (DD)	
2.3.1.3	Low energy adaptive clustering hierarchy (LEACH)	6
2.3.1.4	Threshold sensitive Energy Efficient sensor Network protoco	
2215	(TEEN)	8
2.3.1.5	Power-Efficient Gathering in Sensor Information Systems (PEGASIS).	Q
2.3.2 MA	C protocol	
2.3.2.1	Sensor MAC (S-MAC) protocol.	
2.3.2.1	Time-out MAC (TMAC)	
2.3.2.3	Aloha protocol.	
2.3.2.4	Wise MAC.	
2.3.2.5	Barkeley media access control (B-MAC)	
2.3.2.6	Data gathering (D-MAC)	
	Self-organized medium access control for sensor net	
2.3.2.1	(SMACS)	
2328	Energy efficient MAC	
	architectures for power reduction	
	oly voltage scaling,	
	lti-threshold voltage	
	ver gating	
	ZY LOGIC CONTROL	
3.1 Introduct		17

3.2 Members	ship functions	18
3.3 Propertie	es of the fuzzy sets	21
	ons of the fuzzy sets	
3.5 Linguisti	ic variables	22
3.6 Fuzzy co	ontrol system	22
3.6.1 Fuz	zzification	23
3.6.2 Rul	le base or Rule evaluation	24
3.6.3 Det	fuzzication	25
3.7 Fuzzy S	Systems: Mamdani versus Sugeno	26
	amdani fuzzy system	
3.7.2 Sug	geno fuzzy system	26
3.8 Adaptiv	ve neuro-fuzzy interference system (ANFIS)	27
	CLATED WORK AND THE PROPOSED SYST	
SIMULATION USI	ING MATLAB/SIMULINK	29
4.1 Introduc	ction	29
4.2 Smart b	order monitoring	29
4.3 Related	work on border monitoring	30
4.3.1 Sma	art security system using embedded system technolo	30
4.3.2 Ene	ergy Efficient Approach for Surveillance Applicat	ions
Base	ed on Self Organized Wireless Sensor Network	.31
4.3.3 Sma	art dust network for technical border surveillance u	sing
mul	tiple signatures	31
4.3.4 Fleg	gsens: Secure Area Monitoring Using Wireless Se	nsor
Netv	works	32
4.4 The pro	posed system design	33
4.4.1 Alge	orithm of the proposed system	33
4.4.2 The	proposed system simulation using MATLAB/Simulink	c. 35
4.4.3 The	fuzzy system controller for the proposed system	36
4.4.4 The	ANFIS proposed system	41
CHAPTER 5: HAR	RDWARE IMPLEMENTATION OF THE PROPOS	SED
SYSTEM	• • • • • • • • • • • • • • • • • • • •	44
5.1 Introduc	ction	44
5.2 Propose	ed system description	44
5.3 Testing	and resulting	48
5.3.1 Res	ults of the saved power	48
5.3.1.1	power saved by the algorithm	48
5.3.1.2	power saved by the power gating	48
5.3.2 Test	ting the node	49
5.3.2.1	Case 1(the duty cycle and case of No danger)	.49
5.3.2.2	Case 2 (case of Animal)	50

5.3.2.3 Case 3 (case of Human)	5 1
5.3.2.4 Case 4 (case of Vehicle)	52
CHAPTER 6: CONNCLUSION AND SUGGESTION FOI	
WORK	54
6.1 Conclusion	54
6.2 Suggestion for future work	54
LIST OF PUBLICATION	55
REFRENCES	56
APPENDIX A: The code of the proposed system	60

List of Tables

Table 4.1: Description of the membership functions of each input	38
Table 4.2: IF-THEN rules of the proposed system	39
Table 4.3: Description of the output of the proposed fuzzy logic syste	40
Table 5.1: Specifications of Arduino mega 2560	46
Table 5.2 Properties of fuzzy controller	48
Table 5.3 Losing voltage and current without the power gating	49

List of Figures

Figure 2.1: Hardware architecture of a regular sensor node	4
Figure 2.2: An example of interest diffusion in sensor network	6
Figure 2.3: Cluster based module	7
Figure 2.4: Basic S-MAC scheme	10
Figure 2.5: WISE MAC concept	.11
Figure 2.6: B-MAC communication samples	.11
Figure 2.7: Data gathering tree in D-MAC scheme	.12
Figure 2.8: Static leakages current	.14
Figure 2.9: V _{th} -dependency of transistor leakage current and transistor delay	.15
Figure 2.10: Isolation cell	15
Figure 2.11: Power switching sequencing in a power-gated design in case of on and off	.16
Figure 3.1: Triangle membership function	19
Figure 3.2: Trapezoidal membership function	.19
Figure 3.3: S-function membership function	.20
Figure 3.4: L-function membership function	.20
Figure 3.5: Height, core and support of fuzzy set	.21
Figure 3.6: Intersection and union of fuzzy sets	.22
Figure 3.7: Typical FLC system	.22
Figure 3.8: Example of 3 sets fuzzy system	.23
Figure 3.9: ANFIS structure	.28
Figure 4.1: Border Monitoring using WSN	
Figure 4.2: Block diagram of Transmitter and Receiver	
Figure 4.3: WSN based surveillance scenario	.31
Figure 4.4: Block diagram of smart dust network	32
Figure 4.5: The algorithm of the system	
Figure 4.6: The proposed system simulation in MATLAB Simulink	.35
Figure 4.7: Duty cycle and the outputs of the three sensors	.36
Figure 4.8: The inputs and four outputs of the fuzzy system controller	
Figure 4.9: PIR membership function.	.37
Figure 4.10: Acoustic membership function	.37
Figure 4.11: Magnetic membership function	
Figure 4.12: Output of the fuzzy logic system	.38
Figure 4.13: The output of the fuzzy logic controller	
Figure 4.14: Training and checking data of the proposed ANFIS system	.41
Figure 4.15: Error training of the proposed system	.41
Figure 4.16: Test against training data	
Figure 4.17: Test against checking data	.42

Figure 4.18: ANFIS structure of the proposed system	43
Figure 4.19: Output of ANFIS proposed system	43
Figure 5.1: System structure of the node	44
Figure 5.2: Block diagram of the proposed system	45
Figure 5.3: The wiring diagram of the system	47
Figure 5.4: The wiring diagram NPN transistor	47
Figure 5.5: Fuzzy logic of the proposed system	48
Figure 5.6: The node in case 1	49
Figure 5.7: The output of the oscilloscope in case 1	50
Figure 5.8: The node in case 2	50
Figure 5.9: The output of the oscilloscope in case 2	51
Figure 5.10: The node in case 3	51
Figure 5.11: The output of the oscilloscope in case 3	
Figure 5.12: The node in case 4	
Figure 5.13: The output of the oscilloscope in case 4	

Nomenclature

ACO Acoustic

ANFIS Adaptive neuro fuzzy interference system

B-MAC Barkeley media access control

C_L Load capacitance

d Distance between transmitter and receiver

D-MAC Data gathering

Energy required to run radio electronics for one bit

 E_{tx} Energy required to transmit EFS Energy required for bit/m²

E-MAC Energy efficient MAC

E/Trans Energy per transmission

f_{clock} Clock frequency

FLC Fuzzy logic control

I_{peak} Short circuit current plus current required to charge the internal

capacitance

LEACH Low energy adaptive clustering hierarchy

MAG Magnetic

P Desired percentage of cluster heads

P_{dvn} Dynamic power loss

PEGASIS Power-efficient gathering in sensor information systems

PIR Passive infra-red

P_{SC} Static power

P_{SW} Switching power

S-MAC Sensor MAC protocol

SMACS Self-organized medium access control for sensor network

SPIN Sensor protocol for information via negotiation

T (n) Threshold value

t_{sc} Duration of short circuit

T-MAC Time out MAC

TEEN Threshold sensitive energy efficient sensor network protocol

 $egin{array}{ll} V_{dd} & Supply \ voltage \ V_{th} & Threshold \ voltage \end{array}$

 $\begin{array}{ll} WSN & \text{Wireless sensor network} \\ \alpha & \text{Probability of transition} \end{array}$