ASSESSMENT OF VITAMIN D STATUS AMONG SEPTIC CHILDREN ADMITTED TO PICU AND ITS EFFECT ON THE CLINICAL OUTCOME

Thesis

Submitted for Partial Fulfillment of Master Degree
In Pediatrics

By

Mohamed Ibrahim Mohamed Mostafa

Resident of Pediatric
Faculty of Medicine- Ain Shams University (2011)
Dar Elsalam General Hospital
(M.B.B,CH)

Supervised by

Dr. Asmaa Alhusseiny Ahmed

Assistant Professor of Pediatric Faculty of Medicine - Ain Shams University

Dr. Ahmad Mostafa Allam

Lecturer of Pediatric Faculty of Medicine - Ain shams University

Faculty of Medicine
Ain Shams University
2019

List of Contents

Ti	Title I	
•	List of Abbreviations	. I
•	List of Tables	. V
•	List of Figures	. IX
•	Introduction	. 1
•	Aim of the Work	. 3
•	Review of Literature	
	- Chapter (1): Vitamin D	. 4
	- Chapter (2): Pediatric Sepsis	. 51
•	Patients and Methods	. 75
•	Results	. 85
•	Discussion	. 112
•	Summary	. 126
•	Conclusion	. 130
•	Recommendations	. 131
•	References	. 133
•	Arabic Summary	

°C.....Celsius degree **1,25-(OH)2 vit D...**1,25- Dihydroxyvitamin D. **1,25D**1,25-dihydroxyvitamin D **24-OHase**......25-hydroxyvitamin D-24-hydroxylase **25-(OH) vit D**.......25- Hydroxyvitamin D **25D**......25-hydroxyvitamin D Complement fragment 5a receptor **7-DHC**......7- Dehydrocholesterol **AB**.....B-lymphocytes AI.....Adequate intake **AMPs**Antimicrobial peptides ANOVA.....Analysis of variance AODMAdult onset diabetes mellitus **ARDS**.....Acute respiratory distress syndrome **AT**.....T-lymphocytes **ATP**.....Adenosine triphosphate **BP**.....blood pressure BS.....blood sugar C5a.....Complement fragment Ca.....Calcium **CaSR**Calcium-sensing receptor **CD**Crohn disease CHD.....Coronary heart disease CNSCentral nervous system **D**......Vitamin D deficient ptients

DBPVitamin D binding protein **EFSA**European Food Safety Authority FEV1Forced expiratory volume in 1 second GCSGlasgow Coma Score **HAART**Highly active antiretroviral therapy **HBP**High blood pressure **Hr**Hour I......Vitamin D insufficient patients ICUIntensive care unit ILInterleukin IOIntraosseous **IOM**Institute of Medicine IU.....International Unit IV.....Inravenous LBDLigand binding domain LPSLipopolysaccharide MARRS......Membrane-associated rapid response steroid binding protein **min**.....minute MRSA Methicillin-resistant staphylococcus aureus MSMultiple sclerosis N.....Number NA.....NO abnormality factor NF-kBNuclear kappa-light-chainenhancer of activated B cells **NICU**.....Neonatal intensive care unit NONitric oxide

NOSNitric oxide synthase **PAMP**.....Pathogen-associated molecular pattern PCRPolymerase chain reaction **PELOD**.....pediatric logistic organ dysfunction **PICU**Paediatric intensive care unit PMNsPolymorphonuclear cells **Previt**Previtamin **PRISM**Pediatric risk of mortality **PRR**pathogen-recognition receptors PTHParathyroid hormone **RA**Rheumatoid arthritis RDARecommended daily allowances RhoARas homolog gene family member A **ROS**reactive oxygen species **RXR**.....Retinoid X receptor **S**......Vitamin D sufficient ptients **SA-HRP**.....Streptavidin-HRP **SBP**.....Systolic blood pressure **ScvO2**......Central venous oxygen saturation SD.....Standard deviation **SE**.....Standard error Secs.....Seconds SIRSSystemic inflammatory response syndrome **SNP**.....Single nucleotide polymorphism **SOFA**Sequential [Sepsis-related] Organ Failure Assessment

SOFA Sequential Organ Failure Assessment
TB Mycobacterium tuberculosis
Th Thelper cell
TLR Toll-like receptor
TLRs Toll-like receptors
TNFa Tumor necrosis factor alpha
UL Tolerable upper intake level
URI Urinary tract infection
USA United States of America
VDD Vitamin D deficiency
VDR Vitamin D receptor
VDRES Vitamin D response elements

VitVitamin

List of Tables

Table No.	Title Page	
Review of Literature tables		
Table (1):	Different forms, nomenclature and sources of vitamin D	
Table (2):	Vitamin D-rich foods	
Table (3):	The recommended daily allowances of Vitamin D	
Table (4):	The Tolerable upper intake level of Vitamin D	
Table (5):	Health Canada recommendation for dietary allowances and tolerable upper intake levels for vitamin D 23	
Table (6):	EFSA recommendation for Adequate Intake and Tolerable upper limit for vitamin D	
Table (7):	Basic science studies of vitamin D and the innate immune response 39	
Table (8):	Strategies to Prevent and Treat Vitamin D deficiency in children48	
Table (9):	Symptoms of hypervitaminosis D 49	
Table (10):	Definitions for pediatric sepsis 53	
Table (11):	Age-specific vital signs and laboratory variables	
Table (12):	Definitions for organs dysfunction for children 54	

List of Tables (Continued)

Table No.	Title Pag	ζe
Table (13):	Epidemiology of pediatric sepsis in multicenter studies in developed countries since 2003	
Table (14):	Risk factors for sepsis 58)
Table (15):	Definition for pediatric sepsis)
Table (16):	Age-specific vital signs and laboratory variables	•
Table (17):	Definitions for organs dysfunction for children	,
Table (18):	Variables of PIM 2 score79)
Table (19):	Modified Sequential [Sepsis-related] Organ Failure Assessment (SOFA) score)
Results tabl	es	
Table (1):	Sex distribution among studied patients85	<u>,</u>
Table (2):	Age and measurements of studied patients	
Table (3):	Number of systems affected of studied patients at the 1st day of admission	
Table (4):	Initial severity scores and serum vitamin D level of studied patients at the 1st day of admission	

List of Tables (Continued)

Table No.	Title	Page
Table (5):	Clinical outcome of studied patients	87
Table (6):	Vitamin D status in relation to age	89
Table (7):	Vitamin D status in relation to sex	89
Table (8):	Vitamin D status in relation to feeding pattern	
Table (9):	Vitamin D status in relation to onset of weaning	
Table (10):	Vitamin D status in relation to vitamin D supplementation	
Table (11):	Vitamin D status in relation to weight for height percentiles	
Table (12):	Vitamin D status in relation to order of birth	
Table (13):	Vitamin D status in relation to daycare center attendance and sun exposure	
Table (14):	Clinical signs of rickets and motor delay compared to vitamin D status	
Table (15):	Vitamin D status in relation to vital signs within 1st hour of admission	
Table (16):	PIM2 score (predicted mortality rate) and SOFA score in the 1st hour after admission in different studied groups	

List of Tables (Continued)

Table No.	Title Page
Table (17):	Number of systems affected on presentation in different studied groups
Table (18):	Vitamin D status in relation to serum total Ca level
Table (19):	Vitamin D status in relation to serum CRP level
Table (20):	Vitamin D status in relation positive blood culture
Table (21):	Vitamin D status in relation to need for mechanical ventilation and catecholamines
Table (22):	Vitamin D status in relation to duration of mechanical ventilation and catecholamines
Table (23):	Vitamin D status in relation to progression to septic shock
Table (24):	Vitamin D status in relation to duration of PICU stay
Table (25):	SOFA score in different study groups 109
Table (26):	Change in SOFA score from day 1 to day 4
Table (27):	Change in SOFA score from day 1 to day 7
Table (28):	Mortality in different study groups 111

List of Figures

Figure No.	Title	Page
Review of Li	terature figures	
Fig. (1):	The Chemical Structure of 25(OH)D (Calcidiol)	
Fig. (2):	The Chemical Structure of 1,25(OH) 2D(calcitriol)	
Fig. (3):	Relationship between hours of sunshine and serum 250HD	
Fig. (4):	Seasonal fluctuation of serum 250HD according to frequency of sun exposure	f
Fig. (5):	Metabolic activation of vitamin D3 to its hormonal form, 1,25(OH)2D3	
Fig. (6):	Vitamin D metabolism during pregnancy and lactation	•
Fig. (7):	Functional domains of the vitamin D receptor (VDR)	
Fig. (8):	Vitamin D intakes recommended by the Institute of Medicine and the Endocrine Practice Guidelines Committee	2 3
Fig. (9):	Role of 1,25(OH)2D3 in calcium homeostasis	
Fig. (10):	Contribution of vitamin D to good health	
Fig. (11):	Metabolism of 25-hydroxyvitamin D [25(OH)D] to 1,25 dihydroxyvitamin D[1,25(OH)2D] for nonskeletal functions	1

List of Figures (Continued)

Figure No.	Title	Page
Fig. (12):	Regulation of immune function by 1,25(OH)2D	
Fig. (13):	Reported incidence of vitamin D deficiency defined as a 25-hydroxyvitamin D (25[OH]D) level below 20 ng/mL around the globe in pregnant women and the general population.	- I I
Fig. (14):	Schematic representation of the major causes of vitamin D deficiency and potential health consequences	7
Fig. (15):	Algorithm for septic shock identification	
Fig. (16):	Algorithm for septic shock management	
Results figur	res	
Fig. (1):	Sex distribution among studied patients	
Fig. (2):	Vitamin D status among studied patients	
Fig. (3):	Vitamin D status in relation to feeding pattern	
Fig. (4):	Vitamin D status in relation to vitamin D supplementation	
Fig. (5):	Vitamin D status in relation to weight for height percentiles	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (6):	Vitamin D status in relation to order of birth	
Fig. (7):	Vitamin D status in relation to daycare center attendance and sun exposure	
Fig. (8):	Vitamin D status in relation to clinical signs of rickets and motor delay	
Fig. (9):	Vitamin D status in relation to temperature	
Fig. (10):	Vitamin D status in relation to PIM2 % (predicted mortality rate) in the 1st hour after admission	:
Fig. (11):	Vitamin D status in relation to SOFA score in the 1st hour after admission	
Fig. (12):	Number of systems affected on presentation in different studied groups	
Fig. (13):	Vitamin D status in relation to serum total Ca level	
Fig. (14):	Vitamin D status in relation to serum CRP level	103
Fig. (15):	Vitamin D status in relation to positive blood culture	
Fig. (16):	Vitamin D status in relation to need for mechanical ventilation and catecholamines	

List of Figures (Continued)

Figure No.	Title	Page
Fig. (17):	Vitamin D status in relation to duration of mechanical ventilation and catecholamine	ı
Fig. (18):	Vitamin D status in relation to seption shock	
Fig. (19):	Vitamin D status in relation to duration of PICU stay	
Fig. (20):	SOFA score in different study groups	109
Fig. (21):	Mortality in different study groups	111

ABSTRACT

Background: Vitamin D deficiency is thought to negatively impact the cardiovascular, respiratory and immune systems directly through cellular vitamin D receptors.

<u>Aim</u>: To determine the incidence of vitamin D deficiency among septic critically ill children admitted to pediatric intensive care unit (PICU), Children's Hospital, Ain Shams University and the influence of vitamin D status on clinical outcome.

Patients and method: Prospective observational study on 52 critically ill children who were diagnosed with sepsis and admitted to pediatric ICU, Children's Hospital, Ain Shams University in the time period from July 2017 till January 2019. The patients aged 1 month - 18 years and they were subjected to detailed clinical history and examination. The patients were divided according to vitamin D status which was obtained as close as possible to diagnosis of sepsis using ELIZA. Studied groups were compared regarding demographic data, risk factors of vitamin D deficiency, severity of illness at admission and clinical outcome during PICU stay.

Results: The frequency of vitamin D deficiency (67.3 %) among septic children admitted to PICU while 11.5 % of patients were vitamin D insufficient. The mean of serum vitamin D (250HD) among patients was (18.6 ± 20.6 ng/ml). Vitamin D deficiency was highly significant associated with low serum calcium level and high serum CRP level. There was a poor clinical outcome among vitamin D deficient patients but with no significant difference compared to vitamin D sufficient patients regarding need for mechanical ventilation, use of catecholamines, progression to septic shock, length of PICU stay and mortality.

Conclusion: Vitamin D deficiency should be considered as a risk factor for pediatric sepsis. However, it does not affect the clinical outcome.

Keywords: Vitamin D, Pediatric sepsis, PICU.