Assessment of Fracture Resistance and Marginal Adaptation between two different Implant Hybrid Abutment materials.

A thesis

Submitted in partial fulfillment of the requirements for master degree in Fixed Prosthodontics Department

Ain Shams University

Presented by

Islam Mohsen Abo El-Fetouh Ahmed Hammad

B.D.S., Faculty of Dentistry, Cairo University, 2013

Faculty of Dentistry Ain Shams University 2019

Supervisors

Dr. Amina Mohamed Hamdy

Professor, Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University

Dr. Ahmed Ezzat Sabet

Associate professor Fixed Prosthodontics Department, Faculty of Dentistry, Ain Shams University

Dedication

This work is dedicated to

My family and friends for their
love, prayers, support and
encouragement throughout my life.

They taught me many things,
without them I would not be here
today.

Acknowledgment

First and foremost, I would like to thank God for always guiding me throughout every day of life and showering me with more blessings than I deserve.

I would also like to express my deepest gratitude to **Prof. Dr. Amina** who allowed me to be her candidate for this study. Her guidance and support were of utmost importance.

My sincere appreciation also goes to my mentor **Dr. Ahmed Ezzat** for giving me this amazing chance to be my supervisor. It is my honor to thank you for your dedicated efforts, care and encouragement throughout every step of this study.

I would also like to thank my elder brother **Omar El Sergany** for his generous support whenever I need him. His unceasing kindness throughout the past years have made life easier during tough times. Also **Mostafa Khalaf**, **Farid Emad & Caroline Maged** for their great help in this study.

List of Contents

List of tables	II
List of figures	III
Introduction	1
Review of literature	3
Aim of the Study	27
Materials & Methods	28
Results	59
Discussion	71
Summary	78
Conclusion	80
References	81
Arabic Summary	-

List of Tables

Table 1: Materials used in the study	28
Table 2: Experimental factorial design.	33
Table 3: Descriptive statistics for marginal gap (μ) between abutment and crown for different groups	60
Table 4: Effect of different variables and their interactions on marginal gap (μ) between abutment and crown	61
Table 5: Mean \pm standard deviation (SD) of marginal gap (μ) between abutment and crown before and after cementation	62
Table 6: Table (6): Mean \pm standard deviation (SD) of marginal gap (μ) between abutment and crown for different abutment materials	63
Table 7: Mean \pm standard deviation (SD) of marginal gap (μ) between abutment and crown for different crown materials	64
Table 8: Descriptive statistics for marginal gap (μ) between abutment and Ti base for different groups	65
Table 9: Effect of different variables and their interactions on marginal gap (μ) between abutment and Ti base	65
Table 10: Mean \pm standard deviation (SD) of marginal gap (μ) between abutment and Ti base before and after cementation	66

Table 11: Mean \pm standard deviation (SD) of marginal gap (μ)	
between abutment and Ti base for different abutment materials	67
Table (12): Descriptive statistics for fracture resistance (N) for	
different groups	68
Table (13): Effect of different variables and their interactions on	
fracture resistance (N)	69
Table (14): Mean \pm standard deviation (SD) of fracture resistance (N)	
for different crown materials	69

List of Figures

Figure 1: E.max ingots	29
Figure 2: BioHPP granules	29
Figure 3: Multilink Hybrid Abutment luting cement	30
Figure 4: Titanium Implant Dummy	30
Figure 5: Scan abutment M for extra oral scanners	30
Figure 6: Surveyor used to ensure perpendicular position of implant dummy	32
Figure 7: Acrylic resin margin 2mm away from the implant dummy margin	32
Figure 8: Identica blue hybrid scanner	34
Figure 9: Scan abutment screwed to implant dummy	35
Figure 10: Scanned scan abutment	36
Figure 11: Screenshot of abutment design	37
Figure 12: Screenshot of abutment with screw channel	38
Figure 13: Screenshot of hybrid-abutment plus monolithic crown	39
Figure 14: Screenshot of monolithic E.max crown design	39
Figure 15: Proximal view of E.max monolithic cown on abutment	40

Figure 16: Occlusal view of E.max monolithic crown on abutment	40
Figure 17: Screenshot of BIOHPP cutback crown	41
Figure 18: Proximal view of BIOHPP cutback crown	41
Figure 19: Occlusal view of BioHPP cutback crown	42
Figure 20: Wax abutment and crown.	43
Figure 21: E.max press furnace.	43
Figure 22: Wax pattern spruing and investment ring	44
Figure 23: Placing IPS E.max ingot and starting pressing cycle	45
Figure 24: 2 press system.	46
Figure 25: Visio.link.	47
Figure 26: Visio.lign composit.	47
Figure 27: BioHPP finishing kit.	48
Figure 28: Digital microscope mounted on a precision stand	49
Figure 29: Measuring marginal adaptation before cementation under	
microscope	50
Figure 30: Silanizing of tibase	51
Figure 31: Ceramic etching of fitting surface of crown	52
Figure 32: Etching of bonding surface of abutment	53

Figure 33: Silanizing of crowns	53
Figure 34:Cementation of hybrid abutment crown to ti base	
a)labial view b)occlusal view	55
Figure 35: Hydraulic press seating device.	55
Figure 36: Glycerin gel applied to prevent inhibition layer	56
Figure 37: Measuring marginal adaptation after cementation under	
microscope	57
Figure 38: Universal testing machine	58
Figure 39: Loading piston perpendicular to occlusal surface	58
Figure 40: Bar chart showing average marginal gap (µ) between	
abutment and crown before and after cementation	62
Figure 41: Bar chart showing average marginal gap (µ) between	
abutment and crown for different abutment materials	63
Figure 42: Bar chart showing average marginal gap (µ) between	
abutment and crown for different crown materials	64
Figure 43: Bar chart showing average marginal gap (μ) between	
abutment and Ti base before and after cementation	66
Figure 44: Bar chart showing average marginal gap (µ) between	
abutment and Ti base for different abutment materials	67

Figure 45: Bar chart showing average fracture resistance (N) for	
different crown materials	69
Figure 46: Chipping of composite veneer	70
Figure 47: Fracture of E.max crown	70

Key words

Lithium Disilicate (E.max)

Polyetheretherketone(bioHPP)

Fracture resistance

Marginal adaptation

Hybrid abutment

Introduction

Recently, implant dentistry has shown huge evolution, due to the high request for this treatment and constant research into new materials. Implant placement has become the first choice for replacing missing teeth, especially single tooth, due to the good clinical performance that is confirmed and accepted by long-term research.¹

Nowadays, esthetics play an important role in judging the final result of dental restorations. In case of implant, many factors affect esthetics so it is not only enough to place a natural-looking restoration with correct color and dimensions ,but also for a successful result we need a fine management of the peri-implant soft tissue,² which is not always easy and straightforward as soft tissue health is controlled by many factors: angle of implant insertion, the periodontal biotype, level of the first contact between bone and implant, alveolar bone crest level and depth of implant platform.

To solve this esthetic problem, many studies were performed with the continuous innovation and development of CAD/CAM systems which facilitate fabrication of customized non-metallic implant abutments. Zirconia abutment was one of the leading and promising solutions to overcome the grayish shadow color of metal abutments. ³

One of the new techniques is using CAD/CAM systems to produce hybrid abutment crowns either two pieces or one piece.

Also new materials other than zirconia as hybrid ceramics and polymers were introduced, but not all details and information about these new materials are available, so multiple tests should be done to make sure of the durability of these esthetic implant supra-structures.

Review of literature

Implants with ideal position control the success of dental implant supported restorations in a function and esthetic way. Both sufficient bone volume and precise emergence profile are mandatory for natural gingival appearance. ⁴ Therefore, the success of implant is not only measured by osseo-integration but also good esthetic appearance of the restoration. A common problem after dental implant placement is the buccal gingival margin position and insufficient papilla around the dental implant platform that should hide the color of titanium abutments. ⁵

Implant Abutments:

Implant abutments were used as intermediate elements between restorations and implants in multi-unit implant prostheses.⁶ However, abutments role expand to support and manage soft tissue emergence profile and to provide base shades at the cervical portion of single and multi-unit implant prostheses.^{7,8} Such requirements, along with the presence of computer-assisted design/computer-assisted manufacturing (CAD/CAM) technology, have led to create different techniques of custom abutment fabrication using titanium and zirconia.⁹

1.1 Prefabricated Abutments

Titanium has been widely used as an implant abutment material because of its biocompatibility and mechanical properties. ^{10,11} Titanium abutments have also shown predictable results in many clinical studies. ^{12,13} However, these abutments may cause unnatural bluish color appearance at the soft tissue junction in cases of relatively thin tissues that cause