

A HYBRID WIND-WAVE ENERGY SYSTEM WITH BATTERIES FOR OFFSHORE OIL AND GAS PLATFORMS

By

Ahmad Mohammad Saber Abdelsamie

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfilment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

A HYBRID WIND-WAVE ENERGY SYSTEM WITH BATTERIES FOR OFFSHORE OIL AND **GAS PLATFORMS**

By

Ahmad Mohammad Saber Abdelsamie

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfilment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Doaa Khalil Ibrahim

Dr. Tarek Abd Elbadee Boghdady

Faculty of Engineering,

Cairo University

Faculty of Engineering,

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2019

A HYBRID WIND-WAVE ENERGY SYSTEM WITH BATTERIES FOR OFFSHORE OIL AND GAS PLATFORMS

By

Ahmad Mohammad Saber Abdelsamie

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfilment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the Examining Committee	
Prof. Dr. Doaa Khalil Ibrahim	Thesis main advisor
Prof. Dr. Essam El-Din Abou El-Zahab	Internal Examiner
Prof. Dr. Hany Mohamed Hasanien (Ain Shams University)	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2019

Engineer: Ahmad Mohammad Saber Abdelsamie

Date of Birth: 12 / Aug / 1993

Nationality: Egyptian

E-mail: <u>ahmad.m.saber@gmail.com</u>

Phone: +201062556169
Address: Cairo – Egypt
Registration Date: 01 / Mar / 2017
Awarding Date: / / 2019
Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Doaa Khalil Ibrahim

Dr. Tarek Abd Elbadee Boghdady

Examiners: Prof. Dr. Doaa Khalil Ibrahim (Main Advisor)

Prof. Dr. Essam El-Din Abou El-Zahab (Internal Examiner)
Prof. Dr. Hany Mohamed Hasanien (External Examiner –

Ain Shams University)

Thesis Title: A Hybrid Wind-Wave Energy System with Batteries for

Offshore Oil and Gas Platforms

Key Words: Energy Storage; Offshore Hybrid Renewable Energy

systems; Power reliability; Wave energy; Wind energy.

Summary:

The offshore Oil and Gas (OOnG) sector accounts for a great portion of Greenhouse gases (GHG) emissions. The idea of the electrification of OOnG platforms by clean sustainable energy sources, namely wind and wave, was a turnaround. Combining wind energy turbines (WETs) and wave energy converters (WECs) for less generation variability has been recently proposed in literature. OOnG electric loads are of high sensitivity, and though require a high level of reliability, which contradicts with the intermittent nature of winds and waves. The usage of battery packs could help decrease these variations. But practical batteries are known to degrade over many factors. In this thesis, a comprehensive study is presented on quantifying the change in reliability of electric supply caused by coupling of a wind-wave (WW) hybrid offshore energy converter unit (HOEC) with Lithium-based energy storage (LBESS), while considering LBESS's degradation. A case study on USA's largest oil port was carried out to demonstrate this hypothesis. A variety of WW ratios were studied. For each ratio, the maximum possible load level and the optimal battery size were calculated. The optimisation problem was solved using a simple-yet-robust systematic approach.

Simulations showed that the proposed concept, regardless the battery ageing, not only saves area, but also provides a good reliability level in an OOnG environment. Therefore, integrating such WWB-HOECs could be a key solution for cutting down GHG' emissions from OOnG platforms, and related applications.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references sections.

Name: Ahmad Mohamed Saber Abdelsamie

Date: / /2019

Signature:

ACKNOWLEDGMENT

Alhamdulillah*...

^{*} Alhamdulillah: The ultimate gratitude and praise be to God; in Arabic language.

TABLE OF CONTENTS

ACKNO	WLEDGMENTi
TABLE	OF CONTENTSiii
LIST O	F FIGURESvi
LIST O	F TABLESix
LIST O	F SYMBOLS AND ABBREVIATIONSx
ABSTR	ACT xiii
CHAPT	ER (1): INTRODUCTION
1.1	Overview1
1.2	Problem Statement
1.3	Thesis Contribution and Objectives2
1.4	Thesis Layout
CHAPT	
	MS FOR THE ELECTRIFICATION OF OFFSHORE OIL AND GAS
PLATFO	
2.1	Renewable Energy for OOnG Platforms: a Brief Review
2.2	Offshore Wind Energy Turbines (WETs)
2.3 2.3.1	Wave Energy Converters (WECs)
2.3.1	
2.3.2	Energy Storage (ES)
2.3.1	
2.3.1	
2.3.3	
2.4.4	•
2.4.5	
	6. 6
СНАРТ	ER (3): MODELLING OF HOEC PARTS, SYSTEM, AND
	BILITY INDEX16
3.1	WET Model
3.2	WEC Model
3.3	LBESS Model
3.4	LBESS Ageing
3.4.1	Calendar Ageing 20
3.4.2	Cyclic Ageing
3.4.3	Total Ageing21

3.5	Load N	Model	22
3.6	Reliab	ility Constraint	22
3.7	The Er	nergy System	23
CHAP.	ΓER (4):	: METHODOLOGY	26
4.1	Hypotl	neses	
4.2		ch Questions	
4.3	System	n's Energy Management Philosophy	26
4.4	Proble	m Formulation and Solution	27
4.4	.1	Before Integrating LBESS (WW-HOEC)	28
	4.4.1.1	Finding $P_L 1$	28
4.4	.2	After integrating LBESS (WWB-HOEC)	30
	4.4.2.1	Finding $P_L 2$	30
	4.4.2.2	Optimal LBESS Sizing for $P_L 2$	31
4.4	.3	Integrated Algorithm	33
CHAP'	ΓER (5):	: CASE STUDY	35
5.1	Case S	tudy Introduction	35
5.2		on	
5.3	Meteor	rological Data	37
5.3	.1	Wind Speed Data (WSPD)	37
5.3	.2	Wave Data	39
	5.3.2.1	Significant Wave Height Data	39
	5.3.2.2	Average Wave Period Data	40
	5.3.3	Temperature Data	41
CHAP.	ΓER (6):	RESULTS AND DISCUSSIONS	42
6.1	Step-b	y-Step Results of the 1 st Scenario (HOEC model A)	42
6.1		Finding $P_L 1$ and $P_L 2$	
6.1	.2	LBESS Sizing	
6.2	Sizing	Results for All Scenarios: HOEC Models A to H	45
6.2		Finding PL1 and PL2	
6.2	.2	LBESS sizes	
6.3	Produc	eed Powers Results for 1st Scenario: HOEC Model A	47
6.4	LBESS	S Performance Results for 1st Scenario: HOEC Model A	52
6.4		Participation in the system	
6.4	.2 LBESS	S Cycles	52
6.4	.3 LBESS	S Fading	55

6.5	CF Results and LBESS Lifetimes Estimation for All Scena to H	
6.5.	.1 CF Results	60
6.5.	.2 LBESS Lifetimes Estimation	61
6.6	Wind-to-Wave Ratios Recommendation	62
CHAPT	TER (7): CONCLUSIONS & FUTURE WORK	65
7.1	Conclusions	65
7.2	Future Work	65
REFER	RENCES	67
APPEN	NDIX	74
POW	ER MATRICES OF THE USED WAVESTAR MODELS	74
Mo	odel C	75
Mo	odel E	75
Mo	odel H	
Mo	odel K	76
ں الرسالة	ملخص	

LIST OF FIGURES

Figure 1.1: An OOnG platform
Figure 2.1: Offshore WETs farm, from Siemens photo courtesy
Figure 2.2: Siemens SG 10.0-193 DD offshore WET
Figure 2.3: Vestas images courtesy: V164-9.5 MW offshore WET 6
Figure 2.4: Different technologies for wave energy conversion:
Figure 2.5: Wave-star machine's principle of operation
Figure 2.6: Simulated image of: A wave-star in operation (left) A wave-star in
storm protection mode (right)9
Figure 2.7: Classification of energy storage technologies; green (top) section
denotes short-term ES, magenta (middle) section denotes medium-
term ES, and blue (bottom) section denotes long-term ES 10
Figure 2.8: Energy storage technologies charts
Figure 2.9: Different ageing factors and their hypothetical influence (Inner
mesh) on the lifetime of a Li-ion battery 15
Figure 3.1: Vestas 9.5 MW WET's constructed power curve
Figure 3.2: Siemens 2.3 MW WET's constructed power curve
Figure 3. 3: Reconstructed power matrix for Wave-star model C
Figure 3. 4: Constant continuous load model
Figure 3. 5: System under study
Figure 3. 6: HOEC models explanation
Figure 4. 1: HOEC without a battery (WW-HOEC)
Figure 4. 2: HOEC with a battery (WWB-HOEC)
Figure 4. 3: Optimisation search algorithm 1 used for finding: P_L 1 (Without
LBESS)
Figure 4. 4: Optimisation search algorithm 2 used for finding: P_L 2 (After
integrating LBESS)31
Figure 4. 5: Optimisation search algorithm 3 used for finding: Optimum C_0 32
Figure 4. 6: Optimisation search algorithm 4 used for finding: Optimum P_{BO} 33

Figure 4. 7: The full Optimisation sequence: $Part 1: P_L 1$ (Without LBESS);
Part 2: P_L 2 (After integrating LBESS); Part 3: Optimum C_0 ;
<i>Part 4: Optimum P_{BO}</i>
Figure 5. 1: LOOP: Illustration of different activities carried out at LOOP (top
and middle), and location on Google maps (bottom)
Figure 5. 2: Wind velocities at LOOP's location: (a) histogram & (b) timeline,
at 10 m reference height
Figure 5. 3: Corresponding WSPD timeline in LOOP's location at 130 m (top)
and at 80 m (bottom) heights
Figure 5. 4: H_S timeline for the location
Figure 5. 5: T_W data timeline for the location
Figure 5. 6: Temperature timeline data for for the location
Figure 6. 1: (a) Iterations to find $P_L 2$ and (b) the corresponding ELF in
scenario 1
Figure 6. 2: Checking improvement in ELF with increased LBESS rate 43
Figure 6. 3: Finding CO for scenario 1 (HOEC model A)
Figure 6. 4: Finding PBO for scenario 1 (HOEC model A)
Figure 6. 5: Case study: HOEC models, & and p
Figure 6. 6 WWB-HOEC models and LBESS sizes: C ₀ & P _{B0}
Figure 6. 7: (a) P_{WIND} ; and (b) P_{WAVE} for scenario 1 (HOEC model A) 48
Figure 6. 8: (a) P_{REN} and (b) P_{HOEC} scenario 1 (HOEC model A)
Figure 6. 9: Total generated power curve for scenario 1 (HOEC model A)
(a) Example of a high-energy day,
(b) Example of a low-energy day51
Figure 6. 10: Battery performance in scenario 1 for HOEC model A (a) P_{BAT} ,
(b) SOC 53
Figure 6. 11: Battery performance in scenario 1 for HOEC model A: nc
(a) Instantaneous, (b) Cumulative54
Figure 6. 12: LBESS's: (a) C_{fade_cal} , (b) C_{fade_cyc}
Figure 6. 13: Battery C_{fade} in scenario 1 during a year (a) hourly, (b)
Cumulative 57

Figure 6. 14: I	LBESS's: (a) PC_{fade_cal} (b) PC_{fade_cyc}	. 58
Figure 6. 15: I	Battery PC_{fade} in scenario 1 during a year (a) hourly,	
((b) Cumulative	. 59
Figure 6. 16: (Case study: HOEC models & CF values	. 60
Figure 6. 17:	LBESS degradation: C_{fade} per year (%)	. 61
Figure 6. 18:	LBESS degradation: Lifetime (years)	. 62
Figure 6. 19:	WW HOECs analysis	. 63
Figure 6. 20: W	VWB HOECs analysis	. 63
Figure 7. 1: A	rtistic illustration for a possible WWB single device	. 65

LIST OF TABLES

Table 3.1: Models of the used WETS	. 17
Table 3.2: Vestas 9.5 MW WET's data	. 17
Table 3.3: Siemens 2.3 MW WET's data	. 18
Table 3.4: Models of the used WECs	. 19
Table 3.5: WW-HOEC Models	. 24
Table 5.1: Case study scenarios formulation	. 35
Table 5.2: Measured and Calculated WSPD data for LOOP's location	. 37
Table 5.3: Tw and Hs data for LOOP's location	. 37
Table 6.1: Case study results: <i>PL</i>	. 45
Table 6.2: Corresponding battery parameters results	. 47

LIST OF SYMBOLS AND ABBREVIATIONS

1- Symbols

С	:	Battery capacity	MWh
cd	:	Cycle depth	%
C_{fade}	:	Capacity fade	%
C_{fade_cal}	:	Capacity Calendar fade	%
C_{fade_cyc}	:	Capacity Cyclic fade	%
C_{O}	:	Nominal battery capacity	MWh
C_S	:	Vector of ascending values of C_0 s	Dimensionless
ф	:	Ratio of $(P_L 1/P_O)$	%
ΔP_L	:	Incremental step in P_L	MW
ELF_{MAX}	:	Maximum allowable ELF	Dimensionless
ELF_{MIN}	:	Minimum ELF value in a certain ELFs	Dimensionless
ELFs	:	A vector of ELF values corresponding to C_S	Dimensionless
h	:	Height	m
Н	:	Total number of hours in the year	Hours
H_S	:	significant save height	Meters
L(t)	:	Loss of power at hour (t)	MW
nc	:	Number of cycles	Dimensionless
пP	:	Required number of HOECs	Dimensionless
P_B	:	Battery power capability	MW
P_{Bat}	:	Battery produced power	MW
P_{Bat_MAX}	:	Maximum P_{Bat}	MW
P_{Bat_MIN}	:	Minimum P_{Bat}	MW
P_{BO}		Nominal battery power capability	MW

 P_{BO} : Nominal battery power capability

PC_{fade}	:	Power capability fade	%
PC_{fade_cal}	:	Power capability Calendar fade	%
PC_{fade_cyc}	:	Power capability Cyclic fade	%
P_{HOEC}	:	Output power from a HOEC	MW
P_L	:	Load power	MW
$P_L 1$:	Maximum P_L a WW-HOEC can satisfy	MW
$P_L 2$:	Maximum P_L a WWB-HOEC can satisfy	MW
P_O	:	Rated power of an HOEC system	MW
P_{REN}	:	Total generated renewable power by HOEC's parts	MW
P_{WAVE}	:	Power generated from waves.	MW
P_{WIND}	:	Power generated from winds.	MW
Pn	:	Nominal power	MW
ф	:	Ratio of $(P_L 2 / P_O)$	%
SOC	:	State of charge	%
SOC_{MAX}	:	Maximum SOC	%
SOC_{MIN}	:	Minimum SOC	%
t	:	Time	Hours
T	:	Temperature	K
T_W	:	average wave period	Seconds
ν	:	Wind velocity at a certain height	m/s
ΣΡο	:	Total required power capacity to be installed	MW