

A PROPOSED ECONOMICAL BASED APPROACH FOR OPTIMAL SIZING AND PLACEMENT OF DISTRIBUTED GENERATION

By

Eng. Zenhom Mohamed Zenhom Kotb

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in Electrical Power and Machines Engineering

A PROPOSED ECONOMICAL BASED APPROACH FOR OPTIMAL SIZING AND PLACEMENT OF DISTRIBUTED GENERATION

By **Eng. Zenhom Mohamed Zenhom Kotb**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines EngineeringUnder the Supervision of

Dr. Tarek Abdelbadea Boghdady

Professor
Electrical Power and Machines
Department Faculty of Engineering, Cairo
University

Assistant Professor
Electrical Power and Machines
Department Faculty of Engineering, Cairo
University

University

Prof. Dr. Hosam Kamal Youssef

A PROPOSED ECONOMICAL BASED APPROACH FOR OPTIMAL SIZING AND PLACEMENT OF DISTRIBUTED GENERATION

By **Eng. Zenhom Mohamed Zenhom Kotb**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Hosam Kamal Youssef

Thesis Main Advisor

Prof. Dr. Hassen Taher Dorrah

Internal Examiner

Prof. Dr. Almoataz Youssef Abdelaziz
Faculty of Engineering – Ain Shams University

Thesis Main Advisor

External Examiner

Engineer's Name: Zenhom Mohamed Zenhom Kotb

Date of Birth: 9/6/1993 **Nationality:** Egyptian

E-mail: eng.zenhom93@gmail.com

Phone: 01114138795

Address: 28th Zenhom street, Al-sayeda zeinab,

Cairo, Egypt.

Registration Date: 1/3/2017 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Hosam Kamal Youssef

Dr. Tarek Abdelbadea Boghdady

Examiners: Prof. Dr. Almoataz Youssef Abdelaziz (External Examiner)

(Faculty of Engineering – Ain Shams University)
Prof. Dr. Hassen Taher Dorrah (Internal Examiner)
Prof. Dr. Hosam Kamal Youssef (Thesis Main Advisor)

Title of Thesis:

A PROPOSED ECONOMICAL BASED APPROACH FOR OPTIMAL SIZING AND PLACEMENT OF DISTRIBUTED GENERATION

Key Words:

Distributed generation, Genetic Algorithm, Loss reduction, Radial distribution system, Simple payback period.

Summary:

In this thesis, a new approach for optimal allocation of distributed generation for reducing the Simple Payback Period (SPBP) is presented. Distributed Generation (DG) is a small capacity generating units connected to the distribution network close to the consumers. It can provide a promising future for power generation in electric networks. In recent years, the demand for distributed generation into the electrical networks is rapidly increasing. Connecting DG units into the distribution networks can offer environmental, economic and technical advantages. Those advantages can be optimized if the DG unit site and size is properly determined. The goal of this thesis is to provide a complete study of the impact of connecting DG units in the distribution networks on power loss based on economical point of view. Genetic Algorithm (GA) is presented to solve the optimal DG allocation problem in the distribution system. The Proposed solution methodology has been tested on IEEE 33 standard bus system using MATLAB software.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Zenhom Mohamed Zenhom Kotb	Date:
Signature:	

Acknowledgments

First of all, I give thanks to **ALLAH** for giving me strength and blessing to complete this thesis. I would like to thank my thesis main advisor **Prof. Dr. Hosam Kamal Youssef** for his efforts, continuous encouragement and good treatment. He was really a supreme example in science and respect. Many thanks to my thesis advisor **Dr. Tarek El Boghdady**. He served as my older brother in support and encouragement.

I would also like to thank **my parents** for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

I would also like to thank whoever helped me through the process of researching and writing this thesis and whoever this accomplishment would not have been possible without them. Thank you.

Table of Contents

Disclaimer	i
Acknowledgments	ii
Table of Contents	iii
List of Tables.	vi
List of Figures	vii
List of Abbreviations	viii
List of Symbols	X
Abstract	xii
CHAPTER 1: INTRODUCTION	1
1.1 Distributed Generation (DG)	1
1.2 Impact of Distributed Generation on Power Loss	1
1.3 Simple Payback Period	1
1.4 Thesis Objectives.	1
1.5 Organization of the Thesis	2
CHAPTER 2: LITERATURE REVIEW	3
2.1 Definition of Distributed Generation	3
2.2 Merits of Distributed Generation	6
2.2.1 Reducing environmental impacts and greenhouse-gas emissions	6
2.2.2 Saving the transmission and distribution costs	7
2.2.3 Achieving load power demand in remote areas	7
2.2.4 Improving energy efficiency (reducing power loss)	7
2.2.5 Improving voltage stability	7
2.2.6 Improving voltage profile	8
2.2.7 Creating competition in the electricity market	8
2.2.8 Enhancing the system reliability	8
2.2.9 DG can be used as a black start power supply	10
2.2.10 DG can be used for humanitarian and military tasks	10
2.3 Demerits of Connecting Distributed Generation to the Grid	10

2.3.1 The impact on system voltage	10
2.3.2 The impact on protection	11
2.3.3 The impact on the system harmonics	11
2.3.4 Impact on power quality	12
2.4 Distributed Generation Technologies	12
2.4.1 Micro-hydro	13
2.4.1.2 Run-of-the-river hydropower plant	13
2.4.2 Wind turbine	13
2.4.3 Photovoltaic panel	15
2.4.4 Micro-turbines	15
2.4.5 Biomass power plant	16
2.5 Storage Elements.	17
2.6 Optimal Allocation of Distributed Generation	18
2.6.1 Objectives for optimal DGA	18
2.6.2 Constraints for optimal DGA	18
2.6.3 Optimization techniques for optimal DGA	20
2.7 Impact of DG on Power Loss	
2.8 Summary of the Chapter	24
CHAPTER 3: PROBLEM FORMULATION	25
3.1 Total Active Power Loss Formulation	
3.2 SPBP Formulation	25
3.3 Constraints	27
3.3.1 Equality constraints	27
3.3.2 Inequality constraints	27
3.4 The Loading Center of the Distribution System	28
3.5 The Loss Sensitivity Factors of All Buses of the Distribution System	28
3.6 Summary of the Chapter	29
CHAPTER 4: APPLICATIONS AND RESULTS	30
4.1 The IEEE 33 Bus System.	30
4.2 Results and Discussion for Total Active Power Loss Reduction	

4.2.1 Base case: IEEE 33 bus without DG	31
4.2.2 Optimal sizing of Distrusted Generation units for total active power loss reduction.	32
4.2.2.1 Optimal sizing of one DG unit for total active power loss Reduction	32
4.2.2.2 Optimal sizing of two DG units for total active power loss Reduction	34
4.2.2.3 Optimal sizing of three DG units for total active power loss Reduction	35
4.2.3 Optimal sizing and site of Distrusted Generation units for total Active power loss reduction	37
4.3 Why Should Cost Calculations Be Considered?	39
4.4 Results and Discussion for Simple Payback Period Reduction	40
4.5 Summary of the Chapter	43
CHAPTER 5: CONCLUSIONS AND FUTURE WORK	44
5.1 Summary	44
5.2 Conclusions	44
5.3 The Future Work	45
REFERENCES	46
Appendix A	51

List of Tables

1 able 4.1:	descending orderdescending order	31
Table 4.2:	The results of sizing optimization for total active power Loss reduction using one DG unit	33
Table 4.3:	The results of sizing optimization for total active power loss reduction using two DG units	34
Table 4.4:	The results of sizing optimization for total active power loss reduction using three DG units	36
Table 4.5:	The results of sizing and site optimization for total active power loss reduction	38
	The difference in total active power loss after adding one DG unit at bus 32 with two different sizes	39
	The data of capstone microturbine	40
Table 4.9:	The difference in SPBP after adding DG with different sizes at bus 32	42 42

List of Figures

Fig. 2.1: Hydropower plant	14
Fig.2.2: Wind turbine	14
Fig. 2.3: micro-turbines.	16
Fig. 2.4: Biomass power plant.	17
Fig. 2.5: The most common objectives in distributed generation allocation	19
Fig. 4.1: One-line diagram of the IEEE 33 bus system	30
Fig. 4.2: Voltage profile of the 33-bus system at the base case	32
Fig. 4.3: Voltage profile of the 33-bus system at the base case and after connecting one DG unit with different scenarios	33
Fig. 4.4: Voltage profile of the 33-bus system at the base case and after connecting two DG units with different scenarios	35
Fig. 4.5: Voltage profile of the 33-bus system at the base case and after connecting three DG units with different scenarios	36
Fig. 4.6: Voltage profile of the 33-bus system at the base case and after	
DG placement with the optimal size and site for loss reduction	38
Fig. 4.7: Total active power loss after adding one DG unit at bus 32 with different sizes	39
	39
Fig. 4.8: Voltage profile of the 33-bus system at the base case and after DG placement with the optimal size and site for SPBP reduction	43

List of Abbreviations

ABC Artificial Bee Colony

ACS Ants Colony Search

AGA Adaptive Genetic Algorithm

ANN Artificial Neural Network

BSDG Black Start Diesel Generators

CAES Compressed Air Energy Storage

DG Distributed Generation

DGA Distributed Generation Allocation

EPRI Electric Power Research Institute

FES Flywheel Energy Storage

GA Genetic Algorithm

GAMS General Algebraic Modeling System

IA Immune Algorithm

ICA Imperialist Competitive Algorithm

IEA International Energy Agency

IEEE Institute of Electrical and Electronics Engineers

LSF Loss Sensitivity Factor

MAS Multi Agent System

MINOS Modular In-core Nonlinear Optimization System

NEMA National Electrical Manufacturers Association

OECD Organization for Economic Co-operation and Development

PHS Pumped Hydroelectric Storage

PSO Particle Swarm Optimization

SAIDI System Average Interruption Duration Index

SAIFI System Average Interruption Frequency Index

SMES Superconducting Magnetic Energy Storage

SPBP Simple Payback Period

SPSO Selective Particle Swarm Optimization

TDD Total Demand Distortion

THD Total Harmonic Distortion

VSI Voltage Stability Index

List of Symbols

AES The annual saving in energy cost (\$/year)

ARC The annual running cost of the DGs (\$/year)

 B_{ij} The susceptance of the branch between bus i and bus j

Cp The coefficient of performance

 c_{1_i} The installed cost of the DG unit i per kW of the rated power

 c_{2_i} The operation and maintenance cost per kWh for the DG unit i

FC The fixed, or installed, cost of the DGs (\$)

 G_{ij} The conductance of the branch between the two buses i and j

H The period of operation per year (hrs/year)

Ho The net head (m)

n The total number of buses

N The total number of DG units

nb The total number of branches

NAS The net annual saving (\$/year)

 P_{loss} The total active power loss

 los_s^{Pbase} The total active power loss for the base case

loss The total active power loss when DG units are connected

 P_{D_i} The active power demand at bus i

 P_{DG_i} The rated power of the DG unit i

Pw The total power related with the wind kinetic energy

Q The volumetric flow rate (m3/s)

Ri	The fuel input for the DG unit i (Mbtu/hr)
r_{ij}	The real part of the ijth element in [Zbus] matrix
V_i	The voltage magnitude at bus i
V_{j}	The voltage magnitude at bus j
ρ	The air density
ηg	The generator efficiency
ηb	The gearbox efficiency
δ_i	The angle of voltage at bus i
δ_j	The angle of voltage at bus j
ρρ	The energy market price (\$/kWh)
ρ_f	The fuel market price (\$/Mbtu)
$lpha_i$	The loss sensitivity factor at bus i