Registry of Patients with Pulmonary Hypertension Presented to Ain-Shams University Hospitals

Thesis

Submitted for Partial Fulfillment of Doctorate Degree in Cardiology

By

Abdelrahman Elsayed Attia Abdelwahed
Ain Shams University

Under supervision of

Prof. Maiy Hamdy Elsayed

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Hebatallah Mohamed Attia

Assistant Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Dina Adel Ezzeldin

Lecturer of Cardiology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Maiy Hamdy Elsayed, Professor of Cardiology, Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Webatallah Mohamed**Attia, Assistant Professor of Cardiology, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Dina Adel Ezzeldin**, Lecturer of Cardiology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Abdelrahman Elsayed Attia Abdelwahed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	2
Review of Literature	
Pulmonary Hypertension	3
Risk Assessment of Pulmonary Hypertension .	11
Specific Entities of Pulmonary Hypertension	23
Patients and Methods	26
Results	48
Discussion	
Summary	116
Limitations & Recommendations	118
Recommendations	119
References	121
Arabic Summary	

List of Tables

Table No.	Title P	age No.
Table (1):	Risk assessment	
Table (2):	Basic characteristics:	
Table (3):	Symptoms and previous history:	51
Table (4):	The etiology	
Table (5):	Echocardiography data	53
Table (6):	Echocardiograpghy, continued	54
Table (7):	Pre-existing medical treatment	55
Table (8):	Catheterization data	57
Table (9):	Intervention	57
Table (10):	Complications after cath	
Table (11):	Further plan	58
Table (12):	Follow up	
Table (13):	Basic characteristics	
Table (14):	Symptoms and previous history	61
Table (15):	Etiology	
Table (16):	Echocardiography data	
Table (17):	Echocardiography data, continued	
Table (18):	Pre-existing medical treatment	65
Table (19):	Catheterization data:	67
Table (20):	Intervention	67
Table (21):	Complications after cath	68
Table (22):	Further plan	68
Table (23):	Follow up	69
Table (24):	6MWT	70
Table (25):	Complications	70
Table (26):	DOWN syndrome	71
Table (27):	Catheterization data in DOWN syndror	ne72
Table (28):	Eisenmenger syndrome	73
Table (29):	Relation between MPAP and the etiolo	ogy of
	PHTN	74
Table (30):	Relation between PVR and the etiolo	gy of
	PHTN	

List of Cables (Cont...)

Table No.	Title Po	age No.
Table (31):	Relation between 6MWT before and	after
	ASD closure	75
Table (32):	Relation between MPAP, syncope and	m l L.L
	swelling	75
Table (33):	Relation between MPAP, and RV func	tions
	by TAPSE and FAC	76
Table (34):	Relation between syncope, MPAP	and
	6MWT	76
Table (35):	Relation between L.L swelling, MPAP	and
	6MWT	77
Table (36):	Relation between RV functions by TA	APSE
	and MPAP, 6MWT	77
Table (37):	Relation between RV functions by FAC	and
	MPAP, 6MWT	78
Table (38):	Relation between complications, MPAF	and
	6MWT	78
Table (39):	Relation between MPA diameter and M	PAP79
Table (40):	Treatment in TOPP registry	106

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Diagram and correspond	ling
rigure (1):	echocardiographic apical 4- cham	•
	image showing the right ventricu	
	basal and mid cavity RV mi	
	dimensions and the RV longitudi	
	dimension	
Figure (2):	Measurement of tricuspid annular pl	ane
_	systolic excursion	19
Figure (3):	RV FAC in RV-focused apical fo	our-
	chamber view	20
Figure (4):		
Figure (5):	Tricuspid annular plane syst	
	excursion. Patient number 12	
Figure (6):	FAC of the RV from RV-Focused	
	chamber view. Patient number 29	
Figure (7):	RV dimensions in RV-focused vi	
T' (0)	Patient number 3.	
Figure (8):	Maximum TR jet velocity for estimatio	
E' (0)	the RVSP. Patient number 6	
Figure (9):	The enclosed Corridor used in 6MWT	
Figure (10):	West nomogram (for estimation of BS	
Figure (10):	Basic characteristics	
Figure (11):	The etiology	
Figure (13):	Medical treatment.	
Figure (14):	The etiology	
Figure (15):	Medical treatment:	
Figure (16):	Patient no.15: ASD device closing A	
6 - (=-/•	under TEE and fluoroscopic guidance	
Figure (17):	Patient no.125: VSD device closing la	
	PDA	•

List of Figures

Fig. No.	Title	Page No.
Figure (18):	Patient no.58: TEE used for assessm	
Figure (19):	Patient no.58: 3D TEE used for be assessment of ASD	tter
Figure (20):	Patient no.45: A modified short a parasternal view showing a large si restrictive PDA measuring 5 mm v left to right shunt with color turbule	axis zed vith
E: (91).	across.	
Figure (21):	Patient no 130: showing a fluorosci mage of 35 years old patient dur ASD device closure	ring
Figure (22):	Patient no.38: dilated LV dimensi with impaired functions due to sev	vere
Figure (23):	coarctation Patient no.127: dilated non collaps	
119410 (20).	IVC, estimated RAP of 15mmHg	
Figure (24):	Patient no.143: D shaped LV due to dilated RV	
Figure (25):	Patient no.115: hemodynamic study patient with complex congenital he	in eart
Figure (26):	disease Patient no.56: patient with loose	
119410 (20).	band	
Figure (27):	Patient no.56: patient with loose	
Figure (90).	band Patient no.2: patient underwent surg	85
Figure (28):	VSD closure	
Figure (29):	Patient no.24: hemodynamic study patient with mal-posed great vessels.	in
Figure (30):	Treatment in REVEAL registry	

List of Abbreviations

Full term Abb. 6MWD6-minute walking distance ASD.....Atrial septal defect BNPBrain natriuretic peptide CBC.....Complete blood count CCBsCalcium channel blockers CHD......Congenital heart disease CICardiac index CMR.....Cardiac magnetic resonance CT.....Computed tomography DVTDeep vein thrombosis ECGEchocardiography EMAEuropean Medicines Agency ERAs.....Endothelin receptor antagonists ESEisenmenger's syndrome ET.....Endothelin FACFractional area change FDAFood and Drug Administration GEGeneral Electric IPAH.....Idiopathic pulmonary arterial hypertension IUGRIntrauterine growth retardation MPAPMean PA Pressure NT-proBNPN-terminal pro-brain natriuretic peptide PADPPA Diastolic Pressure

List of Abbreviations (cont...)

Abb.	Full term
PAH	.Pulmonary arterial hypertension
PAPUCO	.Pan African Pulmonary hypertension Cohort
PDA	.Patent ductus arteriosus
PDE-5i	Phosphodiesterase type 5 inhibitors
PH	.Pulmonary hypertension
pred	. Predicted
PROs	.Patient-reported outcomes
PVOD	Pulmonary vascular occlusive disease
PVR	Pulmonary vascular resistance
<i>QoL</i>	. Quality-of-life
<i>RA</i>	.Right atrium
<i>RAP</i>	Right atrial pressure
<i>RHD</i>	.Rheumatic heart disease
RV	Right ventricle
<i>RVH</i>	RV hypertrophy
<i>RVSP</i>	Right ventricle systolic pressure
SvO2	.Mixed venous oxygen saturation
TAPSE	. Tricuspid annular plane systolic excursion
VE/VCO2	. Ventilator equivalents for carbon dioxide
VO2	.Oxygen consumption
VSD	.Ventricular septal defect
	. World Health Organization

Introduction

Julmonary hypertension is a Patho-physiological disorder that involves multiple clinical conditions and can complicate many cardiovascular and respiratory diseases (Sliwa et al., 2012).

Registries of patients with pulmonary arterial hypertension (PAH) have been instrumental in characterizing the presentation and history of the disease providing a basis for prognostication. Since initial accumulation of data conducted in the 1980s, subsequent registry databases have yielded information about the demographic factors, treatment, and survival and have permitted comparisons between populations in different eras environments. Inclusion of patients with all subtypes of PAH has also allowed comparisons of these subpopulations (Mocumbi et al., 2011; Thienemann et al., 2016).

The epidemiology of pulmonary hypertension and its burden has not been studied yet in Egypt, in 2016, chest hospital in Abbasiya tried to retrospectively study 52 patients with pulmonary hypertension with trial to increase awareness about pulmonary hypertension among its physicians (Farrag et al., 2016).

Another trial in 2016 studied pulmonary hypertension in adult Egyptian patients with b-thalassemia major and its correlation with natural anticoagulant levels (*Elbedewy et al.*, 2015).

AIM OF THE WORK

o establish a registry for patients with pulmonary hypertension including their clinical data, echocardiographic evaluation, any intervention and the clinical outcome for patients presented to congenital and structural heart disease unit at Ain shams university hospitals.

Chapter 1 PULMONARY HYPERTENSION

Definition: Pulmonary hypertension is a complex group of disorders which result from different pathophysiologic mechanisms but are all defined by a mean pulmonary arterial pressure of 25 mm Hg or more measured by RHC (*Galie et al.*, 2016).

PAH–CHD represents a preventable form of PAH in the recent decades, advances in diagnostic procedures and cardiac surgery have resulted in the prevention of PAH in most children with CHD and systemic-pulmonary shunts in Western countries; this is, unfortunately, not yet the case in developing countries (*Chessa et al.*, 2017).

The clinical classification of pulmonary hypertension according to international pulmonary hypertension guidelines (Simonneau et al., 2013):

- 1- Pulmonary arterial hypertension.
- 2- Pulmonary hypertension due to left heart disease.
- 3- Pulmonary hypertension due to lung diseases and/or hypoxia.
- 4- Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions.

5- Pulmonary hypertension due to unclear and/or multifactorial mechanism.

Pathophysiology:

All congenital heart defects, in which a large intra or extra cardiac communication allows unrestricted pressure and volume overload of the pulmonary circulation, may lead to the development of pulmonary arterial hypertension (PAH), unless repair occurs in early childhood (*Dimopoulos et al.*, 2014).

Pulmonary arterial hypertension (PAH, group 1) is a clinical condition characterized by the presence of pre-capillary PH and pulmonary vascular resistance >3 Wood units, in the absence of other causes of pre-capillary PH (*Galie et al.*, 2016).

Clinical classification of pulmonary arterial hypertension associated with congenital heart disease (Rubin et al., 2013; D'alto et al., 2015; Galie et al., 2016):

1. Eisenmenger's syndrome (ES):

Includes all large intra- and extra-cardiac defects which begin as systemic-to-pulmonary shunts and progress with time to severe elevation of PVR and to reversal or bidirectional shunting; cyanosis, secondary erythrocytosis, and multiple organ involvement are usually present.

2. <u>PAH associated with prevalent systemic-to-</u> <u>pulmonary shunts:</u>

- Correctable.
- Non-correctable.

Includes moderate to large defects; PVR is mildly to moderately increased, systemic-to-pulmonary shunting is still prevalent, whereas cyanosis at rest is not a feature.

3. PAH with small/coincidental defects:

Marked elevation in PVR in the presence of small cardiac defects (usually ventricular septal defects <1 cm and atrial septal defects < 2 cm of effective diameter assessed by echo), which themselves do not account for the development of elevated PVR; the clinical picture is very similar to idiopathic PAH. Closing the defects is contra-indicated.

4. PAH after defect correction:

Congenital heart disease is repaired, but PAH either persists immediately after correction or recurs/develops months or years after correction in the absence of significant postoperative hemodynamic lesions.

Congenital heart disease accounts for nearly one-third of all major congenital anomalies, nearly 1 in 100 children are born with congenital heart disease (6–10/1000 live births),