Screening of vitamin B12 in children diagnosed as Autism Spectrum Disorder

Submitted for partial thesis fulfillment of master degree in Phoniatrics

By

Martha Michael Metyas Tadres

M.B.B.CH

Resident of phoniatrics

phoniatric department of hearing and speech institute

SUPERVISED BY:

Prof. Dr. Hassan Hosny Ghandour

Professor of Phoniatrics

Faculty of Medicine, Ain Shams University

Prof. Dr. Azza Samy Abd El-Hakim

Assistant professor of Phoniatrics
phoniatric department of hearing and speech institute

Faculty of Medicine Ain Shams University 2019

Acknowledgement

To the Almighty **God**, who always guides me through my life with his strong hands. He who had given me the strength and serenity to accomplish this work for the glory of his name.

To **Prof. Dr. Hassan Hosny Ghandour**, Professor of Phoniatrics, faculty of medicine, Ain Shams University, for his great supervision and great help, available advice, continuous encouragement, and his passion to accomplish this work.

To **Prof. Dr. Azza Samy Abd El-Hakim,** Assistant professor of Phoniatrics, Faculty of Medicine, Ain Shams University, for her continuous support, endless effort, and fruitful advice that she had given me throughout this work.

To my family and all my friends, for your continuous support, great help, continuous encouragement, and your passion to accomplish this work.

Without their support it was impossible for this work to be achieved in this form and it is an honor to work under their guidance and supervision.

Index

List of table	4
List of figure	7
Introduction & aim of the work	10
Review Of Literature	
Definition of Autism	14
Epidemiological studies	17
Clinical picture of Autism	18
Etiology of Autism	22
Subjects And Methods	
Results	43
Discussion	65
Summary And Conclusion	73
Recommendations	75
References	76
Arabic Summary	

LIST OF TABLES

_		
Table (1)	Description of personal data among cases group	43
Table (2)	Description of clinical data	44
	among cases group	
Table (3)	Description of Receptive	
	Language age and Receptive	45
	Standard Score among cases	
	group	
	Description of Expressive	
Table (4)	Language age and Expressive	45
1 4010 (4)	Standard Score among cases	45
	group	
	Description of Total Language	
Table (5)	age and Total Standard Score	46
	among cases group	
Table (6)	Description of personal data	46
Table (0)	among controls group	40
Toble (7)	Description of clinical data	47
Table (7)	among controls group	4/
	Description of Receptive	
Table (9)	Language age and Receptive	47
Table (8)	Standard Score among cases	47
	group	
	Description of Expressive	
T 11 (0)	Language age and Expressive	40
Table (9)	Standard Score among cases	48
	group	
	Description of Total Language	
Table (10)	age and Total Standard Score	48
	among cases group	
	3 3 1	
Table (11)	Comparison between cases and	
	controls as regard personal and	49
	medical data	
m 11 (40)	Comparison between cases and	5 0
Table (12)	controls as regard clinical and	50
	lab data	
L	1	

Table (13)	Comparison between cases and controls as regard Receptive Language age and Receptive Standard Score	52
Table (14)	Comparison between cases and controls as regard Expressive Language age and Expressive Standard Score	53
Table (15)	Comparison between cases and controls as regard Total Language age and Total Language Standard Score	55
Table (16)	ROC Curve using vitamin B to discriminate between cases and controls	57
Table (17)	Correlation between vitamin B12 level and each of receptive, expressive and total language age among cases group	58
Table (18)	Correlation between vitamin B12 level and each of receptive, expressive and total Standard Score among cases group	59
Table (19)	Correlation between vitamin B12 level and each of CARS and IQ among cases group	59
Table (20)	Correlation between IQ level and each of Total Language score and Total Language Standard Score among cases group	60

Table (21)	Correlation between vitamin B12 level and each of receptive, expressive and total language age among controls group	61
Table (22)	Correlation between vitamin B12 level and each of receptive, expressive and total Standard Score among controls group	62
Table (23)	Correlation between vitamin B12 level and each of CARS and IQ among cases group	62
Table (24)	Correlation between IQ level and each of Total Language score and Total Language Standard Score among controls group	63
Table (25)	Comparison between Normal and low vitamin B12 patients as regard receptive, expressive and total language age among cases group	64
Table (26)	Comparison between Normal and low vitamin B12 patients as regard receptive, expressive and total language age among controls group	64

LIST OF FIGURES

Figure (1)	Vitamin B ₁₂ syntheses	31
Figure (2)	Description of sex data among case group	43
Figure (3)	Description of Vitamin B ₁₂ level among case group	44
Figure (4)	Comparison between cases and controls as regard age	49
Figure (5)	Comparison between cases and controls as regard gender	50
Figure (6)	Comparison between cases and controls as regard IQ	51
Figure (7)	Comparison between cases and controls as regard vitamin B_{12} level	51
Figure (8)	Comparison between cases and controls as regard Receptive Language age	52
Figure (9)	Comparison between cases and controls as regard Receptive Standard Score	53
Figure (10)	Comparison between cases and controls as regard Expressive Language age	53
Figure (11)	Comparison between cases and controls as regard Expressive Standard Score	53
Figure (12)	Comparison between cases and controls as regard Total Language age	55
Figure (13)	Comparison between cases and controls as regard Total Standard Score	56
Figure (14)	ROC Curve using vitamin B to discriminate between cases and controls	57

Figure (15)	Correlation between IQ level and Total Language age among cases group	60
Figure (16)	Correlation between IQ level and Total Language Standard Score among controls group	63

List of Abbreviations

ABR	Auditory brain stem response
AD	Attention deficit
ADHD	Attention-deficit hyperactivity disorder
AdoCbl	Adenosylcobalamin
aCGH	Array comparative genomic hybridization
ASD	Autism spectrum disorder
CARS	Childhood Autism Rating Scale
Cbl	Cobalamin
CNCbl	Decyanation of cyanocobalamin
CNV	Copy number variants
DNA	Deoxyribonucleic acid
DSM	Diagnostic and Statistical Manual of Mental
	Disorders (5 th edition)
EPA	Environmental Protection Agency
GSH	Glutathione
HCY	Homocysteine
IQ	Intelligence quotient
MeCbl	Methylcobalamin
MMACHC	Methylmalonic aciduria type C and
	homocystinuria
MMR	Mumps, Missiles and Rubella
mRNA	Messenger Ribonucleic acid
MPS	Mucopolysaccharidosis
MS	Methionine synthase
NADPH	Nicotinamide adenine dinucleotide phosphate
PDDs	Pervasive developmental disorders
PDD-NOS	Pervasive developmental disorder not otherwise
	specified
SAH	S adenosylhomocysteine
SAM	S adenosylmethionine
SLI	Specific language impairment
TC	Transcobalamin

Introduction

Autism spectrum disorder (ASD) is a pervasive developmental disorder, defined by impairments in social and communication function, repetitive and stereotyped behavioral patterns (American Psychiatric Association 2013).

Autism disorders characterize spectrum a group of neurodevelopmental heterogeneous disorders, including autism, Asperger syndrome, Rett's disorder, disintegrative childhood disorder. and pervasive developmental disorder not otherwise specified, and are and deficits characterized by social communication accompanied by repetitive and stereotype actions (behaviors), with onset before 3 years of age (Caglayan, 2010).

It appears that genetic predisposition plays a main role in the etiology of autism although environmental influences are also implicated. Heritability contributes about 90% of the risk of a child developing autism, but the heritability of autism is complex and typically it is unclear which genetic factor are responsible (*Freitag*, 2007).

The signs usually develop gradually, but some autistic children first develop more normally and then regress. Diagnosis is made subjectively and based on a cluster of performances observed clinically as there is currently no laboratory test to diagnose autism (*Ratajczak*, 2011).

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-IV) outlines criteria for the diagnosis of attention deficit (AD) and related Pervasive developmental disorders (PDDs) (*Ratajczak*, 2011).

Vitamin B12 is necessary for cell formation, proper digestion, absorption of foods, protein synthesis, and metabolism of carbohydrates and fats. Vitamin B12 deficiency is most often due to a defect in absorption and not dietary lack except in strict vegetarians, since it is only available from animal sources. Deficiency is common in those with digestive disorders, and is present in almost all ASD children (*Jaquelyn et al.*, 2002).

Cobalamin (vitamin B_{12}) deficiency is a simply treated disorder that often goes undiagnosed in newborns and children, placing them at high risk for irreversible brain injury. It is well documented that B_{12} deficiency can cause developmental delay, hypotonia, tremor, seizures, failure to thrive, reduced intelligence quotient (IQ), and mental retardation. Children with B_{12} deficiency exhibit language, and social delays, behavioral issues, and problems with fine and gross motor movement (*Sally and Pacholok, 2014*).

Vitamin B12 (cobalamin, Cbl) exists in multiple forms, including methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), serving as cofactors for MS and methylmalonylCoA mutase, respectively (*Yiting et al.*, 2016).

Lack of vitamin B12 in the maternal diet during pregnancy has been revealed to cause severe retardation of myelination in the nervous system. (*Lovblad et al.*, 1997).

Aim of the work

The aim of this work to investigate level of vitamin B_{12} in ASD children in an attempt to reach such etiological factor and to be incorporated in management if proved.

Autism

A neurodevelopmental disorder, it characterized by an impairment of the growth and development of the brain or central nervous system. A narrower use of the term refers to a disorder of brain function that affects emotion, learning ability and memory and that unfolds as the individual grows. The term is sometimes erroneously used as an exclusive synonym for autism and autism spectrum disorders. Autism affects information processing in the brain by altering how nerve cells and their synapses connect and organize; how this occurs is not well understood (*Levy et al.*, 2009).

The term "Autism" was first defined in 1911 by the Swiss psychiatrist Eugen Bleuler (1857—1939) (Gillberg and Coleman, 2000) as extreme withdrawal from outside into the self-associated with schizophrenia. Then in 1943, the American psychiatrist Kanner described autism psychiatric developmental condition in which there is a combination of social isolation, language expression difficulty and unusual behavioral action in children. In 1980, the third edition of the Diagnostic and Statistical Manual of Mental Disorders, known as DSM-III, was published by the American Psychiatric Association: in which, the term 'pervasive developmental disorder' was used for the general category of autism and related conditions (APA, 1980). Parents usually notice signs in the first year of their child's life (Landa, 2008).

These delays or atypicality in social development, communication, neurocognition, and behavior vary in severity of symptoms, age of onset, and association with other childhood disorders (*National Research Council*, 2001). The Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association) and the 10th edition of the International Classification of Diseases World Health Organization [WHO] list categories of pervasive developmental disorders (PDD) which include autism and four other associated disorders (*WHO*, 1993) (*APA*, 2000).

The five pervasive developmental disorders are (Wilkinson and Lee., 2010):

- 1) austistic disorder.
- 2) Asperger's disorder.
- 3) Rett's disorder.
- 4) Childhood disintegrative disorder.
- 5) Pervasive developmental disorder not otherwise specified (PDD-NOS).

Autism affects individuals throughout the world. There is international and cross-disciplinary agreement on the primary characteristics and validity of autism as a diagnostic category. In fact, there is no other developmental disorder for which internationally accepted criteria exist (*Volkmar*, 2005). Autistic disorder is the clinical term for what is frequently called autism. First described by Leo Kanner over 60 years ago, autism is the most common and typical of the ASD/PDD subtypes. It is generally described as a developmental disorder of neurobiological origin defined on the basis of behavioral and developmental features.