

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Influence of laser welding parameter on the welded joints' quality and mechanical performance of Aluminum-Ceramic Particulate MMCs

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering
(Design and Production Engineering)

By

Hussein Khalid Hussein Abdelazez Zahran

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Supervised By

Prof. Dr. Mohamed Ahmed Taha Prof. Dr. Ahmed Mohamed Mounib El-Sabbagh Prof. Dr. Khaled Mahmoud Abd El-Ghany

Cairo - (2019)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Influence of laser welding parameter on the welded joints' quality and mechanical performance of Aluminum-Ceramic Particulate MMCs

By

Hussein Khalid Hussein Abdelazez Zahran

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Supervising Committee

Name and Affiliation	Signature
Prof. Dr. Mohamed Ahmed Taha	
Design and Production, Ain Shams University	
Prof. Dr. Ahmed Mohamed Mounib El-	
Sabbagh	
Design and Production, Ain Shams University	
Prof. Dr. Khaled Mahmoud Abdel-Ghany	
Head of the Advanced Manufacturing Division	
(Dean of the Faculty), The Central	
Metallurgical Research and Development	
Institute (CMRDI)	

Date:

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Design and Production Engineering

Influence of laser welding parameter on the welded joints' quality and mechanical performance of Aluminum-Ceramic Particulate MMCs

By

Hussein Khalid Hussein Abdelazez Zahran

Bachelor of Science in Mechanical Engineering (Design and Production Engineering) Faculty of Engineering, Ain Shams University, 2014

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Mohamed Ahmed Taha	
Design and Production Engineering Department,	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Ahmed Mounib El-Sabbagh	
Design and Production Engineering Department,	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Samy Jimmy Ebeid	
Design and Production Engineering Department,	
Faculty of Engineering, Ain Shams University.	
Prof. Dr. Nabil Kamal Fathallah	
Mechanical Engineering Department,	
Faculty of Engineering, Azhar University.	

Date:

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Mechanical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

S	Signature	
Hussein K	Khalid Hus	ssein
	I	Date:

Acknowledgments

I would like to thank my great supervisors: Prof. Mohamed Taha and Prof. Ahmed El-Sabbagh for all what I have learnt throughout this journey either technical, or personal. This is a major guiding step towards my career.

This work could never have been done without the cooperation and support from Prof. Sisa Pityana, and all the staff in the laser center, CSIR, South Africa.

I would also like to thank my parents and brother for their continuous support without which nothing could have been achieved. Thank you for bringing me up to this.

To my beautiful fiancé for all her support, empowerment, and motivation to finish this. 'You were part of this from the very beginning'

To my colleagues and friends. Special thanks to Ahmed Awad, Alaa Mohsen, Marwan Faisal, and Hesham Ahmed.

To all the technical staff in the Faculty of Engineering, Ain Shams University. Very special thanks to AbdelSamad Taha. 'شكرا يا عم عبده'

Researcher Data

Name :Hussein Khalid Hussein Abdelazez Zahran

Date of birth : 20/01/1993

Place of birth : Cairo, Egypt

Last academic degree : Bachelor Degree

Field of specialization : Manufacturing Engineering

University issued the degree: Ain Shams University

Date of issued degree : July, 2014

Current job : Demonstrator, Design and Production

Engineering Department, Faculty of

Engineering, Ain Shams University at

Cairo, Egypt.

Abstract

Metal Matrix Composite (MMC) is rapidly becoming prime candidates as structural materials in engineering as well as in electronic application. However, their usefulness is limited by the ability to manufacture products made from these materials, where laser welding is important. The objective of this work is to find the optimum laser welding parameters of AlSiCp MMCs strips. For this purpose, butt welding of 1.2 mm thin strips of Al6063-5 and 10% vf SiC particulates, was conducted applying Nd:YAG laser beam welding. Laser beam diameter was 0.4 mm while a range of laser powers from 2000 W to 2500 W and welding speeds from 4 m/min to 9 m/min were used. The quality of the weld line is examined by micrographic investigation of weld pool geometry, keyhole induced pores, and SiCp distribution in weldpool. The strength of the welded joint is indicated by tensile testing of 3 mm width welded strips. For full penetration of welding, a minimum power of 2000 W. was required. The influence of the welding parameters is presented by drawing the trend lines relating penetration, porosity, weldpool width, and tensile strength, vs. welding parameters. A simulation model was built in comsol Multiphysics® in order to find the temperature distribution in the weldpool. Pores are mainly formed in the agglomeration areas of SiCp and at high laser power, and low welding speeds which significantly affect the mechanical properties of the welded sections. The formation of the undesirable Al4C3 compound in the fusion zone is studied along with its effect on the tensile strength of the specimens. In the end, good quality welded sections were achieved for both volume fractions with an ultimate tensile strength of 188.5 MPa, and 233.5 MPa for the 5 and 10% vf respectively. Optimum parameters are deduced based on these outcomes.

Keywords:

laser, MMC, welding, SiC, porosity, weldpool.

Table of contents

List of Figures	x
List of tables	xiv
1 Introduction	
2 Literature review	6
2.1 Metal Matrix Composites (MMC's)	8
2.1.1 Concept	
2.1.2 Interface	
2.1.3 AlSiCp	
2.1.4 Preparation	
2.1.4.1 Stir Casting	
2.1.4.2 Squeeze Casting	
2.1.4.3 Centrifugal Casting:	
2.1.4.4 Disintegrated Melt Deposition (DMD)	
2.1.4.5 Powder Metallurgy	
2.1.4.6 Semi-solid-state processing	
2.1.4.7 Friction stir processing	
2.1.4.8 Equi-channel Angular Pressing	Error! Bookmark not defined.
2.2 Welding	14
2.2.1 Introduction	
2.2.2 Welding of AlSiCp MMCs	
2.2.2.1 TIG welding	
2.2.2.2 Friction Stir Welding (FSW)	
2.2.2.3 MIG Welding	
2.2.3 Laser Welding	
2.2.3.1 Laser Generation	
2.2.3.2 CO ₂ laser source	
2.2.3.3 Nd:YAG laser source	
2.2.3.4 Process	
2.3 Laser welding of AlSiCp MMCs	27
2.4 Summary	30
3 Experimental Procedures	31
3.1 Composite Preparation	32
3.1.1 Matrix and reinforcement material	32
3.1.2 Stir casting machine	
3.1.3 Wettability enhancement	33
5.1.5 Wettasinty cimaneciment	

	3.2 Strips preparation	33
	3.3 Samples preparation	35
	3.4 Preliminary Al6063 experiments	35
	3.5 Preliminary AlSiCp composites welding experiments	37
	3.6 Laser welding experiments	40
	3.7 Temperature distribution modeling of the laser welding process 3.7.1 Laser beam heat source 3.7.2 Heat transfer in the composite 3.7.3 Simulation components 3.7.4 Assumptions	42 43 44
	3.7.5 Outcomes	
	3.8 Micrographic examination	. 46
	3.9Mechanical testing	47
1	Results and discussion	48
	4.1 Preliminary Al6063 laser lines	49
	4.2 Preliminary AlSiCp welding experiments	51
	4.3 Verification of simulation outputs	55
	4.4 Temperature in weldpool	
	4.5 Root morphology	62
	4.6 Microstructure	69 73 77 82
	4.7 Tensile properties	93
5	Conclusion	100
R	Peferences	101

List of Figures

Figure 1. Matrix and reinforcement types in composites
Figure 2. Schematic diagram of the contact angle between liquid and solid
surface [12]
Figure 3. Types of processing techniques for composite fabricationError!
Bookmark not defined.
Figure 4. Schematic for stir casting process [1]. Error! Bookmark not defined.
Figure 5. Schematic for squeeze casting process [1] Error! Bookmark not
defined.
Figure 6. Schematic for centrifugal casting: a) Horizontal, b) Horizontal
inclined, c) Vertical true, d) semi vertical, e) Vertical inclined [26] Error!
Bookmark not defined.
Figure 7. Schematic of Disintegrated Melt Deposition (DMD) [12]Error!
Bookmark not defined.
Figure 8. Schematic of Friction Stir Processing Error! Bookmark not defined.
Figure 9. Stages of Friction Stir Processing Error! Bookmark not defined.
Figure 10. Schematic of Equi-channel Angular Pressing [34]. Error! Bookmark
not defined.
Figure 11. Real surfaces of parts to be welded: (a) physical gap due to surface
roughness and (b) oxide or absorbed layer [36]. Error! Bookmark not defined.
Figure 12. Effect of pressure and heat on the continuity of atoms in welding [36]
Error! Bookmark not defined.
Figure 13. Effect of heat melting the substrate material or filler material on the
continuity of atoms in welding [36] Error! Bookmark not defined.
Figure 14. Microscopic image of fusion zone in TIG welded AlSi9 with 20%
SiC showing agglomeration of SiC in fusion zone [48]
Figure 15. Schematic diagram for continuous drive friction welding process [52]
Figure 16. Microstructure image of FSW AA2124/20% SiCp showing
reinforcement alignment [54]
Figure 17. Schematic of the IEA process
Figure 18. Rykalline's diagram showing the heat flows of different sources and
the diameter of these sources [56]21
Figure 19. Transverse and longitudinal shrinkage of martensitic steel when
subject to different types of welding [56]
Figure 20. Laser generation concept (a) stimulated absorption (b) spontaneous
emission (c) stimulated emission [58]
Figure 21. Schematic of the power of laser beam over time for pulsed laser
source
Figure 22. Schematic of laser welding process [59]

Figure 23. A schematic of the conduction mode welding [57]	26
Figure 24. A schematic of the keyhole penetration mode welding [60]	27
Figure 25. Typical cross section of the keyhole penetration welding mode [61]	
	27
Figure 26. Depletion of SiC particulates from fusion zone [62]2	
Figure 27. Mathematical model for caluclating mole fractions of various phases	
between Al and SiC [54]2	
Figure 28. AlSiCp composite strips	
Figure 29. Preliminary Al6063 laser lines	
Figure 30. Laser butt welding experiment	38
Figure 31. Machine setup and fixture for butt welding	
Figure 32. Geometry of the simulation model on comsol	
Figure 33. Meshing of the geometry in comsol	
Figure 34. Micrographic image for welding AlSiCp 10% vf with welding	
parameters 1500W and 4 m/min showing conduction mode5	53
Figure 35. Micrographic image for welding AlSiCp 10% vf with welding	
parameters 2250W and 12 m/min showing keyhole penetration mode5	54
Figure 36. Micrographic image for welding AlSiCp 10% vf with welding	
parameters 2700W and 6 m/min showing inhomogeneous mixing5	54
Figure 37. Inhomogeneous mixing area under high magnification5	55
Figure 38 (a) Temperature distribution in the weldpool along y direction for z =	=
1.2 mm (Cap of the weldpool) vs the micrographic image showing the width at	
the cap for AlSiCp 5% 2000 W. and 6 m/min5	56
Figure 39. Weldpool width calculated from the simulation results vs the	
measured from experimental samples for AlSiCp 5% 2000 W5	57
Figure 40. Relation between welding speed and peak temperature in weldpool	
for different values of laser power in AlSiCp 5% vf5	58
Figure 41. Relation between welding speed and peak temperature in weldpool	
for different values of laser power in AlSiCp 10% vf5	59
Figure 42. Peak temperature in weldpool for AlSiCp 5% vf composite vs 10%	
vf composite in welding at laser power 2000 and 2500 W. at different speeds. 6	50
Figure 43. Relation between temperature ratio and the welding speed for	
different values of laser power6	51
Figure 44. Cross section of AlSiCp 5% vf welds at 2000 W. (a) speed of 7	
m/min showing incomplete penetration. (b) 6 m/min showing complete	
penetration and flat surface6	
Figure 45. Root of welded AlSiCp 5% vf at 2500 W. and 4 m/min. showing the	•
formation of gap near the end6	
Figure 46. weldpool width vs. welding speed for different laser powers in	
welding AlSiCp 5% vf6	59

Figure 47. weldpool width vs. welding speed for different laser powers in
welding AlSiCp 10% vf70
Figure 48. Micrographic images showing the increased humping with increased
power for welding AlSiCp 10% vf at 6 m/min: (a) 2000 W. (b) 2275 W. (c)
2500 W71
Figure 49. weldpool width vs. welding speed at 2000 W laser power for 5 and
10% vf composites
Figure 50. weldpool width vs. welding speed at 2500 W laser power for 5 and
10% vf composites
Figure 51. Comparison of grain size in the weldpool in AlSiCp 5% vf (a) 2500
W. and 4 m/min (cooling rate 114426 °C/s) (b) 2500 W. and 7 m/min (cooling
rate 184415 °C/s)74
Figure 52. Comparison of grain size in the weldpool in AlSiCp 10% vf (a) 2275
W. and 5 m/min (cooling rate 117779 °C/s) (b) 2500 W. and 6.5 m/min (cooling
rate 124142 °C/s)75
Figure 53. Relation between cooling rate and welding parameters in AlSiCp 5%
vf76
Figure 54. Micrographic image of the cross section of AlSiCp 10% vf (2500 W.
and 6.5 m/min) showing different types of pores formed77
Figure 55. Relation between the porosity formation in the weldpool and heat
input for welding AlSiCp 5% vf
Figure 56. Relation between the porosity formation in the weldpool and heat
input for welding AlSiCp 10% vf
Figure 57. Relation between pores formed, and laser power and welding speed
in welding AlSiCp 5% vf79
Figure 58. Relation between pores formed, and laser power and welding speed
in welding AlSiCp 10% vf
Figure 59. SEM micrograph of a pore formed in welding AlSiCp 5% vf at
power 2500 W. and speed 4 m/min
Figure 60 . Pore size vs welding speed for the same welding power in AlSiCp
5% vf (a) 2500 W. 7 m/min (b) 2500 W. 4 m/min
Figure 61. Good distribution of SiC particulates in the fusion zone in welding
AlSiCp 5% vf at 2400W. and 7 m/min
Figure 62. Good distribution of SiC particulates in the fusion zone in welding
AlSiCp 10% vf at 2275W. and 6 m/min
Figure 63. Relation between Power and SiC vf percentage in fusion zone for
different speeds in welding AlSiCp 5% vf
Figure 64. Relation between Power and SiC vf percentage in fusion zone for
different speeds in welding AlSiCp 10% vf
Figure 65 . SiCp agglomeration at HAZ boundary for welding AlSiCp 5% vf at 7
m/min: (a) 2000 W. (b) 2500 W

Figure 66 . SiCp agglomeration at HAZ boundary for welding AlSiCp 10% vf at
9 m/min: (a) 2000 W. (b) 2500 W
Figure 67. Relation between Power and SiC vf percentage in fusion zone for
different SiCp vf at 6 m/min
Figure 68. Al4C3 agglomeration in the microscopic image of AlSiCp 5% vf
welded at 2500 W. and 4 m/min
Figure 69. Al4C3 agglomeration in the microscopic image of AlSiCp 10% vf
welded at 2275 W. and 5 m/min
Figure 70. Temperature distribution over time in the weldpool center (y=0) for
AlSiCp 5% vf (a) 2000 W and 4 m/min (b) 2500 W and 4 m/min)92
Figure 71. SEM image of fusion zone showing the distribution of needle shaped
Al4C3, and the deterioration of a SiC particulate93
Figure 72. Ultimate tensile strength vs laser power at 4 m/min for AlSiCp 5% vf
94
Figure 73. Ultimate tensile strength vs laser power at 6 m/min for AlSiCp 5%
vf94
Figure 74. Ultimate tensile strength vs laser power at 7 m/min for AlSiCp 5% vf
95
Figure 75. Ultimate tensile strength vs laser power at 5 m/min for AlSiCp 10%
vf95
Figure 76. Ultimate tensile strength vs laser power at 6 m/min for AlSiCp 10%
vf96
Figure 77. Ultimate tensile strength vs laser power at 9 m/min for AlSiCp 10%
vf96
Figure 78. Ultimate tensile strength vs welding speed at 2000 W. for AlSiCp
5% vf
Figure 79. Ultimate tensile strength vs welding speed at 2500 W. for AlSiCp
5% vf
Figure 80. Ultimate tensile strength vs welding speed at 2000 W. for AlSiCp
10% vf
Figure 81. Ultimate tensile strength vs welding speed at 2500 W. for AlSiCp
10% vf

List of tables

Table 1. Properties of most important particle reinforcements used in MMCs [7]
Table 2. Mechanical properties of Al6061 (T6) and composites [8]11
Table 3. Chemical composition (wt%) of Al6063 alloy used in stir casting 32
Table 4. Rolling stages for AlSiCp composites
Table 5. Laser line parameters used on Al6063 strips
Table 6. Welding parameters used for the preliminary experiments in AlSiCp
10% vf composites
Table 7. Parameters used in laser welding experiments
Table 8. Kroll's reagent constituents
Table 9. Parameter estmates and their significance on the penetration depth in
A16063 strips
Table 10. Parameter estimates and their significance on porosity in the fusion
zone in Al6063 strips49
Table 11. Parameter estmates and their significance on the fusion zone width in
A16063 strips50
Table 12. Laser welding modes for different parameters in laser lines for
A16063 strips50
Table 13. Laser welding mode in AlSiCp 10% vf using different laser welding
parameters
Table 14. Images for the root for welding AlSiCp 5% vf at different welding
powers and speeds
Table 15. Images for the root for welding AlSiCp 10% vf at different welding
powers and speeds
Table 16 EDS analysis for the pore area in welding AlSiCp 5% vf at power
2500 W. and speed 4 m/min
Table 17 . Significance of welding parameters on the SiC vf percentage in the
fusion zone
Table 18. The time in which the center of the weldpool (y=0) remained above
970 K for each parameter in AlSiCp 5% vf90
Table 19. The time in which the center of the weldpool (y=0) remained above
970 K for each parameter in AlSiCp 10% vf90

1 Introduction