سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

بسم الله الرحمن الرحيم

Byrgev

FINITE ELEMENT ANALYSIS, CLINICAL AND RADIOGRAPHIC EVALUATION OF THE EFFECT OF DIFFERENT FIXED-REMOVABLE RESTORATION DESIGNS ON THE SUPPORTING STRUCTURES

Thesis submitted to the Faculty of Dentistry Alexandria University

In partial fulfillment of the requirements of the Doctor Degree of Prosthodontics

By
OSAMA GABER ARAFA
(B.D.S. & M.S.)

DEPARTMENT OF ORAL PROSTHODONTICS
Faculty of Dentistry
Alexandria University
1998

Supervisors

Prof. Dr. Mahmoud Khamis Abd El Razek

Professor of Prosthodontics Faculty of Dentistry Alexandria University

Prof. Dr. Ebrahim El Darwish

Professor of Testing Materials Faculty of Engineering Alexandria University

Dr. Mohamed Sherine El Attar

Ass. Professor of Prosthodontics Faculty of Dentistry Alexandria University

Acknowledgments

First of all I wish to express my deepest thanks and profound gratitude to **Prof. Dr. Mahmoud Khamis Abd El Razek**, Professor of Prosthodontics, Faculty of Dentistry, Alexandria University for giving me the opportunity to carryout this work. His valuable suggestions and fruitful criticism were of great help.

I also wish to thank **Prof. Dr. Ibrahim El Darwish**, Professor of Testing Materials, Faculty of Engineering, Alexandria University for his precious advice and kind supervision.

My deepest appreciation are due to **Dr. Mohamed Sheriene El Attar**, Associate Professor of Prosthodontics, Faculty of Dentistry,
Alexandria University for his sincere guidance and continuous support.

I am deeply indebted to **Prof. Dr. Samiha Mokhtar**, Professor of Statistics, Statistics Department, Institution of Public Health, Alexandria University who contributed a lot in developing this work and without whom this work could have not been completed.

Special thanks are due to **Tarek Hassan**, Computer Engineer, Mena Construction Co. for his meticulous statistical evaluation and cooperation.

It is my pleasure to acknowledge with deep gratitude the efforts of all those people who shared practically and morally in the creation of this thesis.

CONTENTS

CHAPTER	Page no.
I. INTRODUCTION	. 1
II. LITERATURE REVIEW	5
III. AIM OF THE WORK	107
IV. MATERIALS AND METHODS	108
V. RESULTS	138
VI. DISCUSSION	179
VII. SUMMARY AND CONCLUSION	189
VIII. REFERENCES	192
PROTOCOL	
ARABIC SUMMARY	

INTRODUCTION

Cultural and social background appear to play a significant role in the reaction of people to partial and complete edentulousness. Better information about oral health and preventive measures have lead to a significant reduction of tooth loss. Patients demand better esthetics, chewing comfort and function. Complete loss of teeth leads to impairment of oral functions and changes in physiognomy, therefore, psychological aspects have to be considered (Regina et al. 1994).

Crum and Loiselle (1978) reported several studies that compare denture wearers to those who retained their teeth and their ability to discriminate between changes of thickness of objects and the minimal thickness of objects held by the teeth. Most of these tests recorded superior discrimination for the dentulous patients.

Loiselle et al. (1972) stated that as long as any teeth remained in the oral cavity, propriocetion is more acute. They also found that the anterior teeth to be more sensitive than the posterior teeth.

Treatment modalities in patients with few remaining teeth vary from combined fixed and removable partial dentures to complete dentures. If a treatment plan involving fixed or combined fixed and removable partial dentures is rejected, the dentist and patient may wish to select an alternative treatment that does not involve the removal of all the remaining teeth. That treatment alternative is the overdenture or telescopic overdenture (Badr et al. 1986).

Telescopic crown prosthesis are primarily suitable for molars and premolars, possibly also for canines. They are not suitable for anterior teeth because the double crown construction requires ample space and this gives anterior teeth a plump appearance. The use of the telescopic crowns in removable partial dentures best fulfills the requirement of an abutment teeth. It also acts as a controlling factor in achieving the equalization that must exist between the supporting segments of a partially edentulous mouth. This kind of control results in minimal alveolar bone resorption with maximal preservation of the abutment teeth.

Telescopic crown prosthesis have proven to be more effective than other direct retainers. Their degree of retention can be planned to suit different situations by modifying the design, the amount of intersurface friction, the configuration of the taper angle, and area of surface contact. Being pericoronal devices, they transmit the occlusal forces in the direction of the long axis of the abutment teeth. This has proven to be the least damaging application force. Lateral forces exerted traumatic pressure on the abutment. Telescopic denture is considered to combine good retentive, stability properties with a splinting action and good psychological tolerance (Langer 1981).

Bar attachments act as splints joining teeth or roots and spanning the edentulous regions between them. They give fixation for the overdenture and splinting for the remaining teeth. The elements of the bar denture are crowns on the abutment teeth, connected by a bar. Bar attachments are divided into two groups, bar units and bar joints. The former as the name applies, provides rigid fixation for the overdenture, whereas bar joints permit some degree of rotational or resilient movement or both (Brewer 1980).

The major objective in the choice of the type of restoration should be in the consideration of how the stress is transferred through the abutment and other structure not only the retention and stability (Thayer and Caputo 1978).

The finite element method is a computerized technique used to determine the stresses and displacement throughout a predesigned model. The method was first introduced in the late sixties in the aerospace industry and was applied in dentistry in 1973 by Farah, Craig and Sikarski to optimize the design of the dental restorations (Farah et al. 1982).

The finite element analysis have been described by several authors, to be a reliable and accurate method for stress analysis. It has been used to study stress patterns induced on the supporting structures by different removable and fixed partial denture designs, and is still used extensively in the field of dental implants (Farah et al. 1988).

The finite element analysis involves the idealization of a continuous structure by a system of discrete components or elements that are one, two or three dimensional. The basic objective is to obtain a solution for the idealized structure, that is, to solve the application of a series of programming systems of equations (Farah et al. 1988).