

OPTIMUM MUD WINDOW TO PROVIDE WELLBORE STABILITY AND REDUCE NON PRODUCTIVE TIME WHILE DRILLING IN MISHRIF FORMATION, SOUTH OF IRAQ

By

Asmaa Hasan Kadhim Manhalawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Petroleum Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2019

OPTIMUM MUD WINDOW TO PROVIDE WELLBORE STABILITY AND REDUCE NON PRODUCTIVE TIME WHILE DRILLING IN MISHRIF FORMATION, SOUTH OF IRAQ

By

Asmaa Hasan Kadhim Manhalawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in **Petroleum Engineering**

Under the Supervision of

Prof. Dr. Abdel Sattar A. Dahab

Dr. Abdulaziz M. Abdulaziz

Professor of Petroleum Engineering
Department of Mining, Petroleum,
and Metallurgical Engineering
Faculty of Engineering,
Faculty of Engineering,

Prof. Dr. Abdulaziz M. Abdulaziz

Associate Prof. of Petroleum Engineering
Department of Mining, Petroleum,
and Metallurgical Engineering
Faculty of Engineering,

Cairo University

Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2019

OPTIMUM MUD WINDOW TO PROVIDE WELLBORE STABILITY AND REDUCE NON PRODUCTIVE TIME WHILE DRILLING IN MISHRIF FORMATION, SOUTH OF IRAQ

By

Asmaa Hasan Kadhim Manhalawi

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Petroleum Engineering

Approved by the
Examining Committee:

Prof. Dr. Abdel Sattar A. Dahab,
Professor of Petroleum Engineering, Cairo University

Dr. Abdulaziz M. Abdulaziz,
Advisor
Associate Professor of Petroleum Engineering, Cairo University

Prof. Dr. Abdel-Alim Hashem Elsayed
Professor of Petroleum Engineering, Cairo University

Dr. Mohamed Alaa El Din M. Abdel-Bakey

External Examiner

Halliburton International Training Center Manager

FACULTY OF ENGINEERING, CAIRO UNIVERSITY, GIZA, EGYPT 2019 Engineer's Name: Asmaa Hasan Kadhim Manhalawi

Date of Birth: 23/5/1981

Nationality: Iraqi

E-mail: Asmaa21112@gmail.com

Phone: +20-1093496901

Address: Al Maadi – Cairo - Egypt

Registration Date: 1/10/2017 **Awarding Date:** /2019

Degree: Master of Science

Department: Petroleum Engineering Department

Supervisors: Prof. Dr. Abdel Sattar A. Dahab

Assistant Prof. Abdulaziz M. abdulaziz

Examiners:

Prof. Dr. Abdel Sattar A. Dahab (Thesis main advisor)

Assistant Prof. Abdulaziz M. Abdulaziz (Advisor)

Prof. Abdel-Alim Hashem Elsayed (Internal examiner)
Dr. Mohamed Alaa El Din A. Bakey (External examiner)

Halliburton International Training Center Manager

Title of Thesis:

Optimum Mud Window to Provide Wellbore Stability and Reduce Non Productive Time While Drilling in Mishrif Formation, South of Iraq

Key Words:

Mechanical Earth Model, Safe Mud Window, Non Productive Time, Wellbore Stability, Rocks Strength Properties

Summary:

This work deals with generating an integrated wellbore stability analysis for Mishrif Formation in South of Iraq area, using the Mechanical Earth Model (MEM). The start was calculating the overburden stress using the density logs, estimating the Pore pressure by using sonic log applying the Eaton method, after that the results have been calibrated using the real pressure data recorded in the well. Fracture pressure is then estimated from the overburden gradient and the pore pressure gradient has been calibrated by the complete losses events in Mishrif Formation and the use of hydraulic fracturing data. The poroelastic strain model is then used to estimate the magnitude of minimum and maximum horizontal stresses. Mohr-Colum Criterion was used to determine the failure conditions of the wellbore walls.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the reference section.

Name: Asmaa Hasan Kadhim Manhalawi	Date:	
Signature:		

DEDICATION

This thesis is dedicated to the soul of my father, may God have mercy on him, which was pulsing in my heart to reach my goal and overcome the difficulties with all strength, my dear mother who has a nostalgic heart that does not stop giving me in countless ways, my brothers and my sisters who encouraged me to work hard to achieve my goals.

ACKNOWLEDGEMENT

I would like to express my appreciation to my supervisors Prof. Dr. Abdel Sattar Dahab who helped me in countless ways. He was always ready to provide the continuous help and support that made this work done properly. He is my soul father who had taught a lot to stand strong and courageous throughout this scientific journey to achieve my goal in obtaining this degree. It was my honor to study under the supervision of one of the giants in petroleum engineering at Cairo University.

I would like to thank my supervisor Dr. Abdulaziz Mohamed. The door of Dr. Abdulaziz office is always open whenever I had a problem or had any questions about my research or study material. His support continued to reach the right direction. The words cannot be enough to express my gratitude and thanks to the supervisors of my thesis. I believe if they were not my supervisors, I would not have reached my study level today.

My gratitude and thanks to the members of the jury, faculty and staff of the Department of Mining, Petroleum and Metallurgical Engineering at Cairo University.

My deep gratitude to Mr. Abdel Jabbar Al-Laibi, the former Minister of Oil; Mr. Dhiya Al-Moussawi, Advisor to the Minister of Oil for energy; Mr. Hayan Abdel Ghani, The former Director of Basra Oil Company; Mr. Ihsan Abdel Jabbar, General Director of the current Basra Oil Company; Mr. Basim Abdel Karim, Deputy General Director of Basra Oil Company, and Zubair Field Operations Division; Mr. Khaled Hayawi, Director of well operations department, and Mr. Nabeel Al Husseini, section Head of the ESP. They all have been a strong catalyst and an integral part of my studies.

My thanks for the support given by the embassies, the Iraqi Embassy in the Arab Republic of Egypt and the Egyptian Embassy in the Republic of Iraq.

My gratitude and deep thanks to Ms. Media Kamal Jalal, Advisor; Zuhair Saad, Consul Republic of Iraq in Cairo; Mr. Ahmed Al Hakim; Dr. Mohamed Abu Kill; Dr. Mazin Al-Mayahi; Mr.Ali Al-Ramahi and Mr. Ahmed Al-Asadi for providing continuous support to me and finding solutions to all problems and overcoming all the risk and difficulties that I faced during my study.

My thanks and gratitude to my colleagues Ms. Ghada, Eng. Um Al Saad, Eng. Hamida, and Eng. Samar, who were the source of support throughout my study. I thank all the people I have learned from them and helped me with anything useful at anytime and anywhere, thank you.

I would like to thank my family, if I'm talking about their support and encouragement, I will need a lot to write about them.

Thank you all from the bottom of my heart.

Table of Contents

DISCLAIMER	I
DEDICATION	II
ACKNOWLEDGEMENT	III
TABLE OF CONTENTS	IV
LIST OF TABLES	VI
LIST OF FIGURES	VII
NOMENCLATURE	IX
ABSTRACT	XI
CHAPTER 1: INTRODUCTION	
1.1. Zubair Field Description	1
1.2. Geological Framework	3
1.2.1. Mishrif Formation (2 nd Pay)	
1.2.2. Zubair Formation (3 rd and 4 th Pay)	5
CHAPTER 2 : LITERATURE REVIEW	7
2.1. Stress	7
2.2. Stress Magnitude at Depth	8
2.3. Stress Around a Vertical Wellbore	9
2.4. Stress Distribution Around Inclined Wellbore	11
2.5. Effects of Chemical Interaction, Temperature, and Flow-Induced Stresses .	
2.5.1. Chemical Interaction	
2.6. Rock Failure Modes	
2.6.1. Flow Induced Stress	
2.6.2. Tensile Failure	
2.6.4. Creep Failure	
2.6.5. Pore Collapse or Comprehensive Failure	
2.7. Rock Failure Criteria	
2.7.1. Mohr Coulomb Criterion	
2.7.2. Mogi-Coulomb Failure Criterion	
2.7.3. Tensile Failure Criterion	17
CHAPTER 3: STATEMENT OF THE PROBLEM	19
CHAPTER 4: METHODOLOGY	21
4.1. The Mechanical Earth Modelling	22
4.2. Horizontal stresses (minimum and maximum)	
4.3. Horizontal stress orientation	
4.4. Mohr columb failure criteria for wellbore stability analysis	25

4.5. Trajectory Sensitivity Analysis	25
CHAPTER 5: RESULTS AND DISCUSSION	27
5.1. Overburden Stress Calculations	30
5.2. Pore Pressure Calculation	30
5.3. Calculating Fracture Gradient	32
5.4. Mechanical Earth Modelling (MEM)	34
5.5. Orientation of Horizontal Stresses:	36
5.6. Horizontal Stresses Magnitude (Minimum and Maximum)	37
5.7. Mohr Columb Failure Criteria for Wellbore Stability Analysis	39
5.8. Pore Pressure and Fracture Pressure Mapping	44
5.9. Calculating Fracture Gradient	54
5.10.Comparison and Tolerance Calculation between Maximum Mud Weig	ght and
Mud Weigh Used	61
Non-Productive Time and Cost Analysis	62
CHAPTER 6 : CONCLUSIONS	71
6.1. Conclusions	71
REFERENCES	73
APPENDIX A: Results of 1D geomechanical analysis to W1-A well	77
APPENDIX B: Results of 1D geomechanical analysis to W2-S well	81
APPENDIX C: Results of 1D geomechanical analysis to W3-M well	85
APPENDIX D: Results of 1D geomechanical analysis to W4-AA well	89
APPENDIX E: Results of 1D geomechanical analysis	93

List of Tables

Table 2.1 Relatives magnitudes and fault stress regimes	9
Table 5.1: Statistical analysis of mechanical elastic properties	27
Table 5.2: Statistical analysis of pore pressure, fracture pressure, insitu stresses, both	1
tensile and compressive stresses	28
Table 5.3: Minimum mud weight calculation for studied wells	53
Table 5.4: Fracture pressure for Wm well compared to mud weight used	55
Table 5.5: Fracture pressure for Wo well compared to mud weight used	55
Table 5.6: Fracture Pressure for Wn Well Compared to Mud Weight Used	55
Table 5.7: Fracture Pressure for W1-A Well Compared to Mud Weight Used	56
Table 5.8: Fracture Pressure for W2-S Well Compared to Mud Weight Used	56
Table 5.9: Fracture Pressure for W3-M Well Compared to Mud Weight Used	56
Table 5.10: Fracture pressure for W4-AA well compared to mud weight used	57
Table 5.11: Fracture Pressure for Wp Well Compared to Mud Weight Used	57
Table 5.12: Fracture pressure for Wr well compared to mud weight used	57
Table 5.13: Fracture pressure for Wt well compared to mud weight used	58
Table 5.14: Fracture pressure for Wv well compared to mud weight used	58
Table 5.15: Maximum mud weight calculation for the studied wells	60
Table 5.16: Difference between mud weight used and the maximum mud weight	
compared to well losses	62

List of Figures

Fig. 1.1: Iraq location map of Zubair Field in South of Iraq	
Fig. 1.2: Top Mishrif reservoir	
Fig. 1.3: Zubair wells on satellite map	
Fig. 1.4: The major Middle East geological features	
Fig. 1.5: The regional stratigraphic column in South of Iraq	
Fig. 2.1: Stress components showing the normal and shear stress	
Fig. 2.2: Stress tensor in arbitrary cartesian coordinate system	
Fig. 2.3: Position of stresses around a wellbore in the rock formation	
Fig. 2.4: Position of stresses around a wellbore	
Fig. 2.5: Collapse of borehole wall	
Fig. 2.6: Mohr-Coulomb failure model from triaxial test data	
Fig. 4.1: A simple flowchart to the proposed methodology	21
Fig. 4.2: Friction angle correlation from gamma ray log	
Fig. 4.3: Failure Modes	
Fig. 5.1: The available data within Mishrif Formation in well W1-A	
Fig. 5.2: The normal compaction trend (NCT) in well W1-A	
Fig. 5.3: The vertical stress, pore pressure and fracture gradient in well W1-A	33
Fig. 5.4: The mechanical earth properties in well W1-A	35
Fig. 5.5: Breakout analysis from FMI in well W1-A	36
Fig. 5.6 A: Anderson theory of faulting	
Fig. 5.6 B: Intermediate case of Anderson theory of faulting	
Fig. 5.7: The vertical and horizontal stresses magnitude in well W1-A	
Fig. 5.8: The wellbore trajectory analysis in well W1-A	40
Fig. 5.9: The calibrated well wellbore trajectory analysis in well Wp	
Fig. 5.10: The calibrated well wellbore trajectory analysis in well Wr	
Fig. 5.11: The wellbore trajectory analysis in well W2-S	41
Fig. 5.12: The calibrated well wellbore trajectory analysis in well Wo	
Fig. 5.13: The calibrated well wellbore trajectory analysis in well Wn	
Fig. 5.14: The wellbore trajectory analysis in Well W3-M	
Fig. 5.15: The calibrated well wellbore trajectory analysis in well Wt	43
Fig. 5.16: The wellbore trajectory analysis in well W4-AA	
Fig. 5.17: The calibrated well wellbore trajectory analysis in well Wv	
Fig. 5.18: The comparison of pore pressure with hydrostatic pressure in well Wo	
Fig. 5.19: The comparison of pore pressure with hydrostatic pressure in well Wn	
Fig. 5.20: The comparison of pore pressure with hydrostatic pressure in well Wr	
Fig. 5.21: The comparison of pore pressure with hydrostatic pressure in well Wt	
Fig. 5.22: The comparison of pore pressure with hydrostatic pressure in well W3-N	
Fig. 5.23: The comparison of pore pressure with hydrostatic pressure in well W1-A	
Fig. 5.24: The comparison of pore pressure with hydrostatic pressure in well W2-S	
Fig. 5.25: The comparison of pore pressure with hydrostatic pressure in well Wp	
Fig. 5.26: The comparison of pore press with hydrostatic pressure in well Wm	
Fig. 5.27: The comparison of pore press with hydrostatic pressure in well Wv	
Fig. 5.28: The comparison of pore pressure with hydrostatic pressure in well W4-A	
Fig. 5.29: Pore pressure distribution in Mishrif Formation, Zubair Field	
Fig. 5.30: Minimum mud weight map distribution for studied wells	54

Fig. 5.31: Fracture pressure distribution of Mishrif formation	59
Fig. 5.32: Maximum mud weight map based on studied wells	61
Fig. 5.33: Total well cost comparison to Mishrif formation losses	63
Fig. 5.34: The mud weight Vs losses analysis plot of well W1-A	64
Fig. 5.35: NPT analysis of well W1-A	64
Fig. 5.36: Cost analysis of well W1-A	65
Fig. 5.37: Mud weight Vs losses analysis plot of W2-S well	65
Fig. 5.38: NPT analysis of well W2-S	66
Fig. 5.39: Cost analysis of well W2-S	66
Fig. 5.40: Mud weight Vs losses analysis plot of W3-M well	67
Fig. 5.41: NPT analysis of well W3-M	
Fig. 5.42: Cost analysis of well W3-M	
Fig. 5.43: Mud weight Vs losses analysis plot of W4-AA well	68
Fig. 5.44: NPT analysis of well W4-AA	
Fig. 5.45: Cost analysis of well W4-AA	69
Fig. E-1: The available data within Mishrif Formation in well W2-S	93
Fig. E-2: The vertical stress, pore pressure and fracture gradient in well W2-S	
Fig. E-3: The normal compaction trend (NCT) in well W2-S	95
Fig. E-4: The mechanical earth properties in well W2-S	96
Fig. E-5: The Vertical and horizontal stresses magnitude in well W2-S	97
Fig. E-6: The available data within Mishrif Formation in well W3-M	98
Fig. E-7: The vertical stress, pore pressure and fracture gradient in well W3-M	99
Fig. E-8: The normal compaction trend (NCT) in well W3-M	.100
Fig. E-9: The mechanical earth properties in well W3-M	.101
Fig. E-10: The Vertical and horizontal stresses magnitude in well W3-M	.102
Fig. E-11: The available data within Mishrif Formation in well W4-AA	.103
Fig. E-12: The vertical stress, pore pressure and fracture gradient in well W4-AA	.104
Fig. E-13: The normal compaction trend (NCT) in well W4-AA	
Fig. E-14: The Mechanical earth properties in well W4-AA	
Fig. E-15: The Vertical and horizontal stresses magnitude in well W4-AA	.107

Nomenclature

CS Rock Cohesion (psi)

DT Compressional Slowness (µs/ft)

ESD Equivalent Static Density (ppg)

E_{Dynamic} Dynamic Young's Modulus (Mpsi)

E_{Static} Static Young's Modulus. (Mpsi)

E Young's Modulus (Mpsi)

FANG Fraction angle (degree)

FPMW Fracture Pressure in Mud Weight Equivalent

FG Fracture Gradient (psi/ft.)

G Gravitational Force (m/s²)

*G*_{dvn} Bulk Modulus Dynamic (Mpsi)

GR Gamma Ray Log (API units)

Im Reactivity Coefficient (dimensionless), (ranges from 0 to 1)

*K*_{dyn} Bulk Modulus Dynamic (Mpsi)

K Biot Coefficient (dimensionless)

LWD Logging While Drilling

LOT Leak off Test (psi)

MD Measured Depth (m)

MDT Molecular Dynamic Tester

MW Mud Weight (ppg)

NCT Normal Compaction Trend (dimensionless)

OBG Overburden Gradient (psi/ft.)

PPG Pressure Gradient (psi/ft.)

P_p Pore Pressure (psi)

Phg Hydrostatic Pressure Gradient (µs/ft.)

P40H Deep Resistivity (Ohm.m)

P28H Medium Resistivity (Ohm.m)

P16H Shallow Resistivity (Ohm.m)

PHIT Total Porosity (dimensionless)

PPRS-Eaton Calculated Pore Pressure from Eaton Method (psi)

RHOB Density Log (gm/cc)

Shmin Minimum horizontal stress (psi)
SHmax Maximum horizontal stress (psi)

Ts Tensile Strength (psi)
TSTR Tensile Strength (psi)

UCS Uniaxial Compressive Strength (psi)

Vp Compressional Velocity (km/s)

Vs Shear Velocity (km/s)

Z Depth (m)

Latin Symbols:

 σ Stress (psi)

 σ_v Vertical Stress (psi)

Ø Porosity (%)

 ρ Density (gm/cm³)

 $v_{Dynamic}$ Dynamic Poisson's Ratio (dimensionless)

v Poisson's Ratio (dimensionless)

 ρb Bulk Density (gm/cm3)

 Δt_{comp} Compressional Slowness (µs/ft.)

 Δt_{shear} Shear Slowness (μ s/ft.)

 σ_h Minimum Principal Horizontal Stress (psi)

 σ_H Maximum Principal Horizontal Stress (psi)

α Biot Coefficient (dimensionless)

 ε_h Minimum Principal Horizontal Strain (dimensionless)

 ε_H Maximum Principal Horizontal Strain (dimensionless)

Ø Friction Angle (deg.)

γ Wellbore Inclination (deg.)

 φ Wellbore Azimuth from the Direction of $\sigma_{H \text{ max}}$ (deg.)

 ΔP_w Internal Wellbore Pressure (psi)

 $\Delta\Pi$ Osmotic Pressure (psi)

 τ_{tmin} Effective Minimum Compressional Principle Stress (psi)

 σ_{max} and σ_{min} Maximum and Minimum Principal Effective Stresses (psi)

ABSTRACT

Wellbore instability is one of the major problems that engineers face during drilling and results in nonproductive time which consequently leads to over cost well. The causes of wellbore instability are often classified into either mechanical (for example, failure of the rock around the hole because of high stresses, low rock strength, or inappropriate drilling practice) or chemical effects, which arise from the damage interaction between the rock, generally shale, and the drilling fluid. Often, field instances of instability are a combination of both chemical and mechanical factors. This problem might cause serious complication while drilling. In some cases, this can lead to expensive operational problems. The increasing demand for wellbore stability analyses during the planning stage of a field arises from either economic considerations or the expanding use of deviated, extended reach and horizontal wells.

This work deals with generating an integrated wellbore stability analysis for Mishrif formation in south of Iraq. The motivation for this work is the economic evaluation of many wells in the study area that showed additional well-cost due to instability problems ranged between USD 530,000 and about Two millions. Drilling these wells without finding a solution for mud losses problems is considered a significant waste in time and cost. Estimating the NPT and consequent cost for the studied wells, indicated that the reasons mainly were severe to complete mud losses in Mishrif Formation. A complete Geomechanical model for the studied wells is necessary. The Geomechanical Model requires calculating the overburden stress using the density logs, estimating the pore pressure by using sonic log, and applying Eaton method. The results are calibrated using the real pressure data recorded in the well. Fracture pressure was then estimated from the overburden gradient and the pore pressure gradient and has been calibrated by the complete losses events and hydraulic fracturing data in Mishrif Formation. The Mechanical Earth model (MEM), includes the static and dynamic elastic properties of the rock; Young's Modulus, Bulk Modulus, Shear Modulus and Possion's Ratio. Then an estimation to the rock strength including uniaxial compressive strength (UCS), Friction angle and tensile strength are indispensable. Core data is not available to calibrate the uniaxial compressive strength. The tensile strength has been calibrated from multistage fracturing data. The orientation of horizontal stresses has been concluded from the formation micro imager (FMI). The SHmin has NW-SE orientation, while the SHmax has a NE-SW orientation. The poroelastic strain model is then used to estimate the magnitude of minimum and maximum horizontal stresses. Wellbore stability plot with any given wellbore inclination and azimuth has been constructed using the above generated geomechanical model using Mohr-Colum failure criteria. As the tolerance after calibrating the results with the other well data, the results indicated that when the difference between the mud weight and the fracture pressure approaches 0.5-0.7 ppg the well is subjected to a severe or complete mud losses. When this difference falls within 0.1-0.2 ppg, the well may experience partial losses. Consequently, when the difference is zero, there will be no losses.