

MODELING OF AMMONIA RELEASE ACCIDENTS IN FERTILIZERS PLANTS

By

Yahia Mohammad Hossam Shawky Al-Sabbagh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

MODELING OF AMMONIA RELEASE ACCIDENTS IN FERTILIZERS PLANTS

By Yahia Mohammad Hossam Shawky Al-Sabbagh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Under the Supervision of

Prof. Dr. Omar Al-Farouk Abd Al-Salam	Prof. Dr. Yasser Hassan Ibrahim
Professor	Professor
Chemical Engineering Department	Air Pollution Department
Faculty of Engineering, Cairo University	National Research Center
Dr. Ayat Ossa	ama Al-Sayyed
Assistan	t Professor
Chemical Engine	eering Department
Faculty of	Engineering,
Cairo U	University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

MODELING OF AMMONIA RELEASE ACCIDENTS IN FERTILIZERS PLANTS

By Yahia Mohammad Hossam Shawky Al-Sabbagh

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

Approved by the
Examining Committee

Prof. Omar Al-Farouk Abd Al-Salam, Thesis Main Advisor

Prof. Dr. Mai Kamal Fouad, Internal Examiner

Prof. Dr. Nasser Mohammad Abd Al-Lateef, External Examiner,
-Air Pollution Department, National Research Center

Engineer's Name: Yahia Mohammad Hossam Shawky

Al-Sabbagh

Date of Birth: 05/05/1986 **Nationality:** Egyptian

E-mail: Yahia.sabbagh86@gmil.com

Phone: 01002035784

Address: 5 Nabatat Street, Garden City, Cairo,

Egypt

Registration Date:01/09/2015Awarding Date:..../..../2019Degree:Master of ScienceDepartment:Chemical Engineering

Supervisors:

Prof. Omar Al-Farouk Abd Al-Salam

Prof. Yasser Hassan Ibrahim, Head of Air Pollution

Department, National Research Center.

Dr. Ayat Ossama Al-Sayyed

Examiners:

Prof. Dr. Nasser Mohammad Abd Al-Lateef, (External

examiner)

Professor of Air Pollution, National Research Center. Prof. Dr. Mai Kamal Fouad (Internal examiner) Prof. Omar Al-Farouk Abd Al-Salam (Thesis main

advisor)

Title of Thesis:

MODELING OF AMMONIA RELEASE ACCIDENTS IN FERTILIZERS PLANTS

Key Words:

Ammonia Release; Fertilizers Plants; Dispersion Area.

Summary:

To deal with ammonia release in fertilizers plants we must know the factors that affect the dispersion of ammonia like wind speed and ground roughness. This thesis will study new factors that may affect ammonia dispersion zone which are the surrounding temperature and source leakage diameter. This study is very important for the decision maker who is in-charge of emergency arrangement and planning. This will greatly help in early prediction of the ammonia leakage dispersion so as to take precautions and reduce injuries.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Dedication

I dedicate this thesis to my whole family especially my grandfather who brilliantly enforced me to seek a master degree.

Acknowledgments

I would like to provide my acknowledgements to the PROPHET MOHAMMAD {O ALLAH BLESS AND GREAT HIM} the source of purity, serenity and beauty. Then to my family who gave me support and encouragement to complete my thesis and to my supervisors; Prof. Omar Al-Farouk, Prof. Yasser Ibrahim and Dr. Ayat Osama who were helpful and gave me great advices.

Table of Contents

DISCLAIME	ER	I
DEDICATIO	ON	II
ACKNOWL	EDGMENTS	III
TABLE OF (CONTENTS	IV
LIST OF TA	BLES	VII
	GURES	
	ATURE	
CHAPTER 1	: INTRODUCTION	1
CHAPTER 2	: THEORETICAL BACKGROUND AND LITERATURE REV	/IEW
•••••		3
2.1.	THEORETICAL BACKGROUND	3
2.1.1.	Basic Principles of Ammonia	3
2.1.2.	Uses and Manufacturing of Ammonia	
2.1.3.	Effect of Ammonia on Human	6
2.1.4.	Exposure Limits of Ammonia	6
2.1.5.	Safety Precautions and Storage	
2.1.6.	Causes of Ammonia Leakage	
2.1.6.1.	Operation Mistakes	
2.1.6.2.	Maintenance and Installation Mistakes	7
2.1.6.3.	External Mistakes	
2.1.6.4.	Equipment Failure	
2.1.7.	Detection of Ammonia Leak World Wide	
2.1.8.	Dispersion Models	
2.1.8.1.	Computational Fluid Dynamics Codes	
2.1.8.2.	ALOHA Model (Areal Locations of Hazardous Atmospheres)	
2.2.	LITERATURE REVIEW	
	2.2.1. The Effect of Wind Speed on The Toxic Impact Zones (FLUENT)	Using 11
2.2.1.1.	Wind Speed	
2.2.1.2.	FLUENT Model	
2.2.1.3.	Case Study 1	
2.2.2	. The Effect of Atmospheric Stability Conditions on The Toxic Impact	Zones
Using (SL	AB)	17
2.2.2.1.	Atmospheric Stability Condition	
2.2.2.2.	SLAB Model	
2.2.2.3.	Case Study 2	
2.2.3.		_
2221	(ALOHA)	19
2.2.3.1.	Ground Roughness	19 10

2.2.4.	The Effect of Different Wind Speeds and Surface Roughness Lengtl	ns on The
Toxic Imp	pact Zones Using (PHAST)	22
2.2.4.1.	PHAST Model	
2.2.4.2.	Case Study 4	
2.2.4.3. 2.2.4.4.	Results at different wind speed	
	3 : CALCULATION OF AMMONIA DISPERSION	
3.1.	RUPTURED HOSE CASE STUDY	
3.2.	METHODOLOGY	
3.3.	SELECTED POINTS OF LEAKAGE	29
3.4.	INPUT DATA AND EQUATIONS	32
3.4.1.	Input data	32
3.4.2.	Gaussian dispersion equation	35
3.4.3.	Emission rate equation	36
3.5.	THE EFFECT OF AMBIENT TEMPERATURE ON AMMONIA DISPERSION	n Using
(ALOHA).		37
3.6.	THE EFFECT OF THE LEAKAGE SOURCE DIAMETER ON A	MMONIA
DISPERSION	N USING (ALOHA)	39
3.7.	THE EFFECT OF DIFFERENT FACTORS ON AMMONIA DISPERSION	N USING
	(ALOHA)). 39
3.7.1.	Wind Speed Effect on Ammonia Dispersion and on Maximum Concer	itration at
a Fixed P	oint	40
3.7.2.	Atmospheric Stability Condition Effect on Ammonia Dispersion	n 40
3.7.3.	Ground Roughness Effect on Ammonia Dispersion	40
CHAPTER 4	4 : RESULTS AND DISCUSSION	41
4.1.	Ambient Temperature Effect on Ammonia Dispersion:	41
4.1.1.	Effect in Case of Atmospheric Stability (A)	
4.1.2.	Effect in Case of Atmospheric Stability (F)	
4.2.	LEAKAGE DIAMETER EFFECT ON AMMONIA DISPERSION:	
4.2.1.	Effect in Case of Atmospheric Stability A	
4.2.2.	Effect in Case of Atmospheric Stability F	
4.3.	DIFFERENT FACTORS AFFECTING AMMONIA DISPERSION	
4.3.1.	Wind Speed Effect	
4.3.1.1.	Effect on Ammonia Dispersion	
4.3.1.2.	Effect on Maximum Concentration at a Fixed Point	
4.3.2.	Atmospheric Stability Condition Effect	
4.3.3.	Ground Roughness Effect	57
CHAPTER 5	5 : CONCLUSIONS AND RECOMMENDATIONS	59
5.1.	Conclusions	59
5.2.	GENERAL RECOMMENDATIONS	
5.2.1.	Maintenance	
5.2.2.	Detecting System	
5.2.3.	Training of Emergency Team	
5.3.	THESIS RECOMMENDATIONS	

REFERENCES	61
APPENDIX A: AMBIENT TEMPERATURES EFFECT ON DIS	STANCES OF
THE THREAT ZONES	65
APPENDIX B: LEAKAGE DIAMETERS EFFECT ON DISTAN	ICES OF THE
THREAT ZONES	83
APPENDIX C: SHOWING THE EFFECT OF OTHER FACTOR	RS ON
AMMONIA DISPERSION	101
APPENDIX D: 1994 قانون رقم 4 لسنة	111

List of Tables

Table 2.1: Types of sensors used to detect ammonia leak [10]	8
Table 2.2: Types of models for ammonia dispersion prediction [9]	9
Table 2.3: Hazard categories modeled in ALOHA [17]	10
Table 2.4: Paquill-Gifford stability conditions [25]	17
Table 2.5: Distance downwind of toxic effect at different wind speed [31]	
Table 2.6: Distance downwind of toxic effect under different roughness length [31]]27
Table 3.1: Emission rates for leakage diameter study	39
Table D.1: Thresholds of air pollutants in work environment	

List of Figures

Figure 2.1: The uses of ammonia in the United State [3]	
Figure 2.2: Process flow sheet of ammonia [5]	
Figure 2.3: The location diagram of injured persons at the emergency scene [8]	
Figure 2.4: Lethal zones for different wind speeds: (a) at absence of building; (b) at	
presence of building [8]	13
Figure 2.5: Severe injury zones for wind speeds: (a) at absence of building; (b) at	
presence of building [8]	
Figure 2.6: Threat zones iso-lines at the ground level in the building absence case at	İ
different wind speed (a) 1m/s, (b) 2m/s, (c) 3m/s [8]	15
Figure 2.7: Threat zones iso-lines at the ground level in the building presence case a	ıt
different wind speed (a) 1m/s, (b) 2m/s, (c) 3m/s [8]	16
Figure 2.8: Dispersion plume calculated in the case of neutral stability condition,	
slightly stable condition and slightly unstable condition [9]	18
Figure 2.9: Consequence analysis based on wind speed and ground roughness [30]	20
Figure 2.10: Consequence analysis based on ground roughness and temperature [30]].21
Figure 2.11: Dispersion cloud area for 25ppm at 120s [31]	23
Figure 2.12: Dispersion cloud area for 25ppm at 300s [31]	23
Figure 2.13: Dispersion cloud area for 25ppm at 420s [31]	
Figure 2.14: Maximum concentration at 25ppm [31].	
Figure 2.15: Maximum concentration at wind speed 7m/s [31]	25
Figure 2.16: Centerline concentration at 300s [31].	
Figure 2.17: Centerline concentration at 600s [31].	
Figure 2.18: Centerline concentration at 900s [31].	
Figure 3.1: Top view of the Egyptian Fertilizers Plant	
Figure 3.2: Top view of the whole area surrounding the plant	
Figure 3.3: Location information dialog box	
Figure 3.4: Chemical Information dialog box	
Figure 3.5: Atmospheric dialog box	
Figure 3.6: Wind Rose for Cairo City from 14 to 18 March [34]	
Figure 3.7: Detailed Hourly weather forecast in Helwan during the study [35]	
Figure 3.8: Gaussian plume dispersion sketch [36]	
Figure 3.9: Gaussian dispersion equation [36]	
Figure 3.10: Gaussian dispersion equation at ground level [36]	
Figure 3.11: Emission rate out of the ruptured hose	
Figure 3.12: Input weather condition	
Figure 3.13: Internal and external summer air temperatures in a high-thermal mass	
house in Egypt	38
Figure 4.1: Distances of threat zones for different ambient temperatures for 1min	
release duration	41
Figure 4.2: Distances of threat zones for different ambient temperatures for 5min	
release duration	42
Figure 4.3: Distances of threat zones for different ambient temperatures for 10min	
release duration	43
Figure 4.4: Distances of threat zones for different ambient temperatures for 1min	0
release duration	44

Figure 4.5: Distances of threat zones for different ambient temperatures for 5min
release duration
Figure 4.6: Distances of threat zones for different ambient temperatures for 10min release duration
Figure 4.7: Distances of threat zones for different leakage diameter for 1min release duration
Figure 4.8: Distances of threat zones for different leakage diameter for 5min release
duration
Figure 4.9: Distances of threat zones for different leakage diameter for 10min release
duration
Figure 4.10: Distances of threat zones for different leakage diameter for 1min release
duration
Figure 4.11: Distances of threat zones for different leakage diameter for 5min release
duration
Figure 4.12: Distances of threat zones for different leakage diameter for 10min release
duration
duration
Figure 4.14: Maximum outdoor and indoor concentrations at wind speed 1m/s for 1min release duration
Figure 4.15: Maximum outdoor and indoor concentrations at wind speed 2m/s for 1min
release duration
Figure 4.16: Maximum outdoor and indoor concentrations at wind speed 3m/s for 1min
release duration
Figure 4.17: Maximum outdoor concentration at different wind speed values for 1min
release duration
Figure 4.18: Maximum indoor concentration at different wind speed values for 1min
release duration
Figure 4.19: Distances of threat zones for different atmospheric stability conditions for
1min release duration
Figure 4.20: Distances of threat zones for different ground roughness mode for 1min
release duration
Fig A.1: Distances of threat zones at ambient temperatures 40°C and stability A for
1min release duration
Fig A.2: Graphical representation of threat zones at ambient temperatures 40°C and
stability A for 1min release duration
Fig A.3: Distances of threat zones at ambient temperatures 40°C and stability A for
5min release duration
Fig A.4: Graphical representation of threat zones at ambient temperatures 40°C and
stability A for 5min release duration
Fig A.5: Distances of threat zones at ambient temperatures 40°C and stability A for
10min release duration
Fig A.6: Graphical representation of threat zones at ambient temperatures 40°C and
stability A for 10min release duration67
Fig A.7: Distances of threat zones at ambient temperatures 30°C and stability A for
1min release duration
Fig A.8: Graphical representation of threat zones at ambient temperatures 30°C and
stability A for 1min release duration
Fig A.9: Distances of threat zones at ambient temperatures 30°C and stability A for
5min release duration69

Fig A.10: Graphical representation of threat zones at ambient temperatures 30°C and
stability A for 5min release duration69
Fig A.11: Distances of threat zones at ambient temperatures 30°C and stability A for
10min release duration
Fig A.12: Graphical representation of threat zones at ambient temperatures 30°C and
stability A for 10min release duration
Fig A.13: Distances of threat zones at ambient temperatures 20°C and stability A for
1min release duration
Fig A.14: Graphical representation of threat zones at ambient temperatures 20°C and
stability A for 1min release duration71
Fig A.15: Distances of threat zones at ambient temperatures 20°C and stability A for
5min release duration
Fig A.16: Graphical representation of threat zones at ambient temperatures 20°C and
stability A for 5min release duration
Fig A.17: Distances of threat zones at ambient temperatures 20°C and stability A for
10min release duration
Fig A.18: Graphical representation of threat zones at ambient temperatures 20°C and
stability A for 10min release duration73
Fig A.19: Distances of threat zones at ambient temperatures 40°C and stability F for
1min release duration
Fig A.20: Graphical representation of threat zones at ambient temperatures 40°C and
stability F for 1min release duration74
Fig A.21: Distances of threat zones at ambient temperatures 40°C and stability F for
5min release duration
Fig A.22: Graphical representation of threat zones at ambient temperatures 40°C and
stability F for 5min release duration
Fig A.23: Distances of threat zones at ambient temperatures 40°C and stability F for
10min release duration
Fig A.24: Graphical representation of threat zones at ambient temperatures 40°C and
stability F for 10min release duration76
Fig A.25: Distances of threat zones at ambient temperatures 30°C and stability F for
1min release duration
Fig A.26: Graphical representation of threat zones at ambient temperatures 30°C and
stability F for 1min release duration
Fig A.27: Distances of threat zones at ambient temperatures 30°C and stability F for
5min release duration
Fig A.28: Graphical representation of threat zones at ambient temperatures 30°C and
stability F for 5min release duration
Fig A.29: Distances of threat zones at ambient temperatures 30°C and stability F for
10min release duration
Fig A.30: Graphical representation of threat zones at ambient temperatures 30°C and
stability F for 10min release duration79
Fig A.31: Distances of threat zones at ambient temperatures 20°C and stability F for
1min release duration80
Fig A.32: Graphical representation of threat zones at ambient temperatures 20°C and
stability F for 1min release duration80
Fig A.33: Distances of threat zones at ambient temperatures 20°C and stability F for
5min release duration81
Fig A.34: Graphical representation of threat zones at ambient temperatures 20°C and
stability F for 5min release duration81

Fig A.35: Distances of threat zones at ambient temperatures 20°C and stability F for
10min release duration
Fig A.36: Graphical representation of threat zones at ambient temperatures 20°C and
stability F for 10min release duration82
Fig B.1: Distances of threat zones at leakage diameter 0.1m and stability A for 1min
release duration83
Fig B.2: Graphical representation of threat zones at leakage diameter 0.1m and stability
A for 1min release duration84
Fig B.3: Distances of threat zones at leakage diameter 0.1m and stability A for 5min
release duration84
Fig B.4: Graphical representation of threat zones at leakage diameter 0.1m and stability
A for 5min release duration84
Fig B.5: Distances of threat zones at leakage diameter 0.1m and stability A for 10min
release duration85
Fig B.6: Graphical representation of threat zones at leakage diameter 0.1m and stability
A for 10min release duration85
Fig B.7: Distances of threat zones at leakage diameter 0.05m and stability A for 1min
release duration86
Fig B.8: Graphical representation of threat zones at leakage diameter 0.05m and
stability A for 1min release duration86
Fig B.9: Distances of threat zones at leakage diameter 0.05m and stability A for 5min
release duration87
Fig B.10: Graphical representation of threat zones at leakage diameter 0.05m and
stability A for 5min release duration
Fig B.11: Distances of threat zones at leakage diameter 0.05m and stability A for 10min
release duration
Fig B.12: Graphical representation of threat zones at leakage diameter 0.05m and
stability A for 10min release duration
Fig B.13: Distances of threat zones at leakage diameter 0.03m and stability A for 1min
release duration89
Fig B.14: Graphical representation of threat zones at leakage diameter 0.03m and
stability A for 1min release duration
Fig B.15: Distances of threat zones at leakage diameter 0.03m and stability A for 5min
release duration90
Fig B.16: Graphical representation of threat zones at leakage diameter 0.03m and
stability A for 5min release duration90
Fig B.17: Distances of threat zones at leakage diameter 0.03m and stability A for 10min
release duration91
Fig B.18: Graphical representation of threat zones at leakage diameter 0.03m and
stability A for 10min release duration91
Fig B.19: Distances of threat zones at leakage diameter 0.1m and stability F for 1min
release duration
Fig B.20: Graphical representation of threat zones at leakage diameter 0.1m and
stability F for 1min release duration92
Fig B.21: Distances of threat zones at leakage diameter 0.1m and stability F for 5min
release duration93
Fig B.22: Graphical representation of threat zones at leakage diameter 0.1m and
stability F for 5min release duration
Fig B.23: Distances of threat zones at leakage diameter 0.1m and stability F for 10min
release duration94