

EVALUATION OF SEISMIC RESISTANCE FOR AN OLD WATER STRUCTURE IN EGYPT USING DYNAMIC TESTING

By

Rana Nasser Ellaithy Hamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

STRUCTURAL ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

EVALUATION OF SEISMIC RESISTANCE FOR AN OLD WATER STRUCTURE IN EGYPT USING DYNAMIC TESTING

By

Rana Nasser Ellaithy Hamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

STRUCTURAL ENGINEERING

Under the supervision of

Prof. Dr. Adel Yahiya Akl

Prof. Dr. Ahmed Shawky Hashad

Professor of structures
Structural Engineering Department
Faculty of Engineering, Cairo University

Prof. Dr. Ahmed Shawky Hashad

Prof. Dr. Ahmed Shawky Hashad

Professor
Construction Research Institute
National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

EVALUATION OF SEISMIC RESISTANCE FOR AN OLD WATER STRUCTURE IN EGYPT USING DYNAMIC TESTING

By

Rana Nasser Ellaithy Hamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE in STRUCTURAL ENGINEERING

Approved by the	
Examining committee:	
Prof. Dr. Adel Yahiya Akl,	Thesis Main Advisor
Prof. Dr. Ahmed Shawky Hashad,	Advisor
Prof. Dr. Sherif Ahmed Mourad,	Internal Examine
Prof. Dr. Eehab Ahmed Badr Eldeen Khalil, Director of Construction Research Institute - NWRC	External Examine

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name** : Rana Nasser Ellaithy Hamed

: 17 / 05 / 1990 **Date of Birth**

National Egyptian

rana.nasser.ellaithy@gmail.com E-mail 01119308200 - 010622336993 Phone

Address Ashgar District - 6 of October

city - Giza - Egypt.

1/10 /2013 **Registration Date** / /2019 **Awarding Date**

Degree Master of Science

Department Structure Engineering

Supervisors : Prof. Dr. Adel Yahiya Akl

Prof. Dr. Ahmed Shawky Hashad

Examiners : Prof. Dr. Sherif Ahmed Mourad (Internal Examiner)

> Prof. Dr. Eehab Ahmed Badr Eldeen Khalil (External Examiner)

Director of Construction Research Institute - NWRC

Prof. Dr. Adel Yahiya Akl (Thesis Main Advisor) (Advisor)

Prof. Dr. Ahmed Shawky Hashad

: EVALUATION OF SEISMIC RESISTANCE FOR AN OLD **Title of Thesis**

WATER STRUCTURE IN EGYPT USING DYNAMIC TESTING

Dynamic analysis, Seismic analysis, Dynamic testing, Hydraulic **Key Words**

structures, Dynamic characteristics, Seismic resistance.

Summary

Scope of the research is to propose a methodology for the assessment of the dynamic resistance of a hydraulic structure. This objective was reached by studying the effect of dynamic loads on the hydraulic structures; case study El-Ayat regulator. A hydraulic structure may expose to many types of dynamic loads such as earthquakes and vehicles flow. Effect of seismic load on hydraulic structures not only depends on to the value of the peak ground motion due to earthquake but also the dynamic characteristics of the structure. In this research; ANSYS Software, workbench module was used to create a finite element model for the structure. Field tests were held to determine the dynamic characteristics of the structure and their results were used to verify the numerical model by comparing the results of the tests with the model's results and updating the model. Finally, seismic analysis was held to the regulator using different Peak Ground Acceleration (PGA) levels to reach the failure condition to evaluate the seismic resistance of the regulator. It was found that an earthquake with 7.3 magnitude on the moment magnitude (Mw) scale caused a stability failure for the regulator. And many other important results for the decision makers.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Rana Nasser Ellaithy Hamed	Date:	
Signature:		

Dedication

To my Lovely Family - the most supportive family one can ever have -; My Mother **Prof. Dr. Nadia Eshra**, My Father **Eng. Nasser Ellaithy**, My Lovely sisters **Issraa** and **Aalaa**, my soul mate and husband **Ahmad Abd Elazeez Eshra**, and my Grand Father **Ellaithy Hamed**. Thank you for being there every time I needed your support which actually without it, I never could finish this work or any other good step in my life.

I also dedicate this work to the precious souls that have departed our world, but still alive in our souls and mind and still supporting us from their world; Our Family's God Father (My Great Lovely Uncle) **Abd Elazeez Eshra**, My Beautiful Grandmothers **Amenah** and **Saadia**. "God please them all."

Acknowledgments

I would like to express my sincere gratitude to my advisors Prof. Dr. Adel Akl, Prof. Dr. Mohamed Naeem and Prof. Dr. Ahmad Hashad, Prof. Dr. Medhat Aziz for their guidance, support, encouragement, valuable discussions, and review during the course of this work, and their great efforts to accomplish the thesis objectives.

I also wish to express my deepest gratitude to Prof. Ehab Khalil, Prof. Dr. Kamal Ghamry, Dr. Dina Emara, Eng. Baher Shokry, Eng. Ahmad Ashraf, Eng. Amr Abdulbaset and Ansys student support team spatially Peteroznewman and Sandeep for their advice and their support

Finally, Thanks to my dear family who are always support me to success. I would not have achieved this work without their help and participation.

Table of Contents

	ACKNOWLEDGEMENTS	I
	DEDICATION	II
	TABLE OF CONTENTS	III
	LIST OF TABLES	VIII
	LIST OF FIGUERS	IX
	NOMENCLATURE	XIV
	ABSTRACT	XVII
1.	CHAPTER 1: INTRODUCTION	1
	1.1. Background	1
	1.2. Statement of the problem	3
	1.3. Objectives of the study	3
	1.4. Scope of work	4
	1.5. Case study	5
	1.6. Thesis outline	6
2.	CHAPTER 2: LITERATURE REVIEW	7
	2.1. Introduction	7
	2.2. Dynamic testing of hydraulic structures	7
	2.3. Hydraulic structures modeling	10
	2.3.1. Masonry structures modeling	9
	2.3.2. Soil modeling and soil structure interaction	11
	2.4. International guidelines for seismic resistance of hydraulic structures	13
	2.5. Failure of dams and hydraulic structures due to earthquakes	17
3.	CHAPTER 3: Dynamic tests of El-Ayat Regulators	18
	3.1. Introduction	18
	3.2. Physical description of the regulator	18
	3.3. Tests Instrumentation and layout	23
	3.3.1. Response sensors	25
	3.3.2. Data Acquisition system	26
	3.3.2.1. Signal Conditioners	26
	3.3.2.2. Data Acquisition Card	27
	3.4. Tests setup and procedure	28
	3.5 Data collecting and storage	29

	3.5.1. Acquisition Date Software PCD-30A	29
	3.5.2. Data Analysis software (ME Scope and Seismo-Signal	30
	programmes)	
	3.5.3. Sampling rates and Duration	31
	3.5.3.1. Sampling Rate	31
	3.5.3.1. Signal Filtration	32
	3.6. Dynamic tests Results (Dynamic characteristics determination)	32
4.	CHAPTER 4: Finite Element Analysis of the Regulator	38
	4.1. Introduction	38
	4.2. Model Description	38
	4.2.1. Geometry	41
	4.2.2. Meshing	45
	4.2.3. Finite elements adopted to simulate the model's elements	46
	4.2.4. Structural elements and surrounding soil material modeling	49
	4.2.5. Adopted elements to simulate soil structure Interaction	50
	4.2.6. Adopted elements to simulate boundary conditions and assigned	50
	loads	
	4.3. Analysis Applied to the model	51
	4.3.1. Modal Analysis	51
	4.3.2. Transient Analysis	52
5.	Chapter 5: FE Model Validation and Tuning	53
	5.1 Model Validation Using Mode Shapes Comparison	53
	5.1.1 Model I	53
	5.1.2 Model II	56
	5.1.3 Model II	59
	5.1.4 Model IV	62
	5.1.5 Model V	65
	5.1.6 Model VI	68
	5.1.7 Model VII	71
	5.1.8 Model VIII	74
	5.1.7 Model IX	77
6.	CHAPTER 6: Determination of MDE for El-Ayat Regulator	80
	6.1. Introduction	80
	6.2. Definition of the used earthquake record	80
	6.3. Methodology	83

	6.4. Scaling of the record.	83
	6.5 Time – History analysis	85
	6.5.1. 0.05 g model	85
	6.5.2. 0.10 g model	89
	6.5.3. 0.15 g model	93
	6.5.4. 0.15g Edgecumbe earthquake model	101
7.	CHAPTER 7: CONCLUSION	105
	7.1. General	105
	7.2. Summary	105
	7.3. Conclusion	105
	7.4. Recommendation for further work	106
	REFERENCES	107
	Annendiy I	110

List of Tables

Table 2.1	:	recommendations on seismic and dynamic analysis of dams	14
Table 3.1	:	General Dimensions of El-Ayat Intermediate Regulator	19
Table 3.2	:	Construction Materials of the Regulator's Elements	19
Table 3.3	:	The current condition of the structural elements of the regulator	21
Table 3.4	:	Accelerometer specifications	25
Table 3.5	:	Signal conditioner specifications	26
Table 3.6	:	PCD-320A specification	27
Table 3.7	:	The obtained mode shape from the field test	37
Table 4.1	:	General Dimensions of El-Ayat Intermediate Regulator	43
Table 4.2	:	Summary of Physical and Mechanical Properties of	49
		Structural Elements' Materials	
Table 4.3	:	Ultimate friction factors and adhesion for dissimilar materials	50
Table 5.1	:	Comparison between the obtained mode shape from the field test and FEM (Model I)	53
Table 5.2	:	Comparison between the obtained mode shape from the field test and FEM (Model II)	56
Table 5.3	:	Comparison between the obtained mode shape from the field test and FEM (Model III)	59
Table 5.4	:	Comparison between the obtained mode shape from the field test and FEM (Model IV)	62
Table 5.5	:	Comparison between the results of the four FE models	65
Table 5.6	:	Comparison between the obtained mode shape from the field test and model V	65
Table 5.7	:	: Comparison between the obtained mode shape from the field test and model VI	68

Table 5.8	:	: Comparison between the obtained mode shape from the field test and model VII	71
Table 5.9	:	: Comparison between the obtained mode shape from the field test and model VIII	74
Table 5.10	:	Comparison between the obtained mode shape from the field test and model IX	77
Table 6.1	:	Properties of Aqaba earthquake record	82
Table 6.2	:	Normal stresses in the structural elements of 0.05 g model	88
Table 6.3	:	Comparison between the strength of the structural elements materials' and the stresses due to the excitation (0.05 g model)	88
Table 6.4	:	Normal stresses in the structural elements of 0.1g model	92
Table 6.5	:	Comparison between the strength of the structural elements materials and the stresses due to the excitation (0.1 g model)	92
Table 6.6	:	Normal stresses in the structural elements of 0.15 g model	96
Table 6.7	:	Comparison between the strength of the structural elements materials and the stresses due to the excitation (0.15 g model)	96
Table 6.8	:	Normal stresses in the structural elements of 0.15g model, Edgecumbe earthquake	104
Table I.1	:	Ultimate friction factors and adhesion for dissimilar materials	111
Table I.2	:	The maximum and minimum stresses in X- direction for the models with free end face soil	112
Table I.3	:	The Maximum and minimum stresses in X- Direction for the models with kH 50% KV elastic support end face soil	114
Table I.4	:	The maximum and minimum stresses in X- Direction for the models with kH 30% KV elastic Support end face soil	116
Table I.5	:	Difference between using Mohr – Coulomb soil model and linear orthotropic soil model on normal stresses	119

List of Figure

Figure 1.1	:	El-Ayat Regulator location on Giza Canal at 63.2 km	3
Figure 2.1	:	DySSA1.1 Interface [15]	8
Figure 2.2	:	Finite Element Model of Dam – Foundation System [16]	9
Figure 2.3	:	Dynamic on-site test of the S. Marcello Pistoiese Bridge, mode 1 [19]	10
Figure 2.4	:	3-d finite element model of the bridge [20]	11
Figure 3.1	:	General Sketch for Elayat Intermediate Regulator	20
Figure 3.2	:	General view of the upstream side of the regulator	21
Figure 3.3	:	The bridge slab from a vent	22
Figure 3.4	:	Cracks and erosions of pier no. (1)	22
Figure 3.5	:	Cracks of Pier No. (2)	22
Figure 3.6	:	Cracks and Erosion of Pier No. (3)	22
Figure 3.7	:	Repair of Pier No. (4)	23
Figure 3.8	:	Cracks and Erosion of the right abutment in the upstream side	23
Figure 3.9	:	Accelerometers Distribution on the first bay of the regulator	24
Figure 3.10	:	Data Acquisition System Configuration	24
Figure 3.11	:	Piezoelectric Accelerometer	25
Figure 3.12	:	Signal Conditioner Unit	26
Figure 3.13	:	Connected Data Acquisition Cards	27
Figure 3.14	:	The temporary bump installation	28
Figure 3.15	:	The truck passing over the temporary bump	29
Figure 3.16	:	Sensor Interface Hardware and Software	30
Figure 3.17	:	Acceleration - time domain of cumulative forced vibration of the barrage due to two trucks excitation- vertical channels	33

Figure 3.18	:	Acceleration - time domain of cumulative forced vibration of the barrage due to two trucks excitation- horizontal channels	34
Figure 3.19	:	FFT amplitudes in frequency domain of cumulative forced	35
		vibration of the barrage due to two trucks excitation- vertical channels	
Figure 3.20	:	FFT amplitudes in frequency domain of cumulative forced vibration of the barrage due to two trucks excitation-horizontal channels	36
Figure 3.21	:	The mode shape obtained from ME scope	37
Figure 4.1	:	Flow chart of the steps to perform the modal analysis using ANSYS	39
Figure 4.2	:	Flow chart of the steps to perform the transient analysis using ANSYS	40
Figure 4.3	:	General view of El-Ayat Intermediate Regulator	41
Figure 4.4	:	General layout for El-Ayat Intermediate Regulator	42
Figure 4.5	:	The solid Elements model of the structural element of the regulator before adding the surrounding soil	44
Figure 4.6	:	The solid Elements model of the regulator with the surrounding soil	44
Figure 4.7	:	Finite element model of the regulator's structural elements	45
Figure 4.8	:	Finite element model of the regulator with the surrounding soil	46
Figure 4.9	:	SOLID185, Homogeneous Structural Solid Geometry [35]	47
Figure 4.10	:	SOLID186 Homogeneous Structural Solid Geometry [35]	48
Figure 4.11	:	SOLID187 Geometry [35]	48
Figure 4.12	:	SURF154 Geometry [35]	51
Figure 5.1	:	The first mode shape of the barrage in field test and model I	54
Figure 5.2	:	The second mode shape of the barrage in field test and model I	55
Figure 5.3	:	The first mode shape of the barrage in field test and model II	57

Figure 5.4	:	The second mode shape of the barrage in field test and model II	58
Figure 5.5	:	The first mode shape of the barrage in field test and model III	60
Figure 5.6	:	The second mode shape of the barrage in field test and model III	6
Figure 5.7	:	The first mode shape of the barrage in field test vs. model IV	63
Figure 5.8	:	The second mode shape of the barrage in field test vs. model IV	64
Figure 5.9	:	The first mode shape of the barrage in field test vs. model V	66
Figure 5.10	:	The second mode shape of the barrage in field test vs. model V	67
Figure 5.11	:	The first mode shape of the barrage in field test vs. model VI	69
Figure 5.12	:	The second mode shape of the barrage in field test vs. model VI	70
Figure 5.13	:	The first mode shape of the barrage in field test vs. model VII	72
Figure 5.14	:	The second mode shape of the barrage in field test vs. model VII	73
Figure 5.15	:	The first mode shape of the barrage in field test vs. model VIII	7:
Figure 5.16	:	The second mode shape of the barrage in field test vs. model VIII	70
Figure 5.17	:	The first mode shape of the barrage in field test vs. model IX	78
Figure 5.18	:	The second mode shape of the barrage in field test vs. model IX	79
Figure 6.1	:	Epicenter location of Aqaba earthquake [37]	8
Figure 6.2	:	Distance between Aqaba earthquake epicenter and El-Ayat regulator	81