

MODELING AND EVALUATION OF STRIP FOOTINGS ON ANCHORED GEOSYNTHETIC REINFORCED SOIL OVERLAYING LOOSE SAND

By

Mohamed Kamal Hussein Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSPHY
in
CIVIL ENGINEERING – PUPLIC WORKS

MODELING AND EVALUATION OF STRIP FOOTINGS ON ANCHORED GEOSYNTHETIC REINFORCED SOIL OVERLAYING LOOSE SAND

By

Mohamed Kamal Hussein Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSPHY
in
CIVIL ENGINEERING – PUPLIC WORKS

Under the Supervision of

Prof. Dr. Mohamed Ibrahim Amer

Prof. Dr. Rami Mahmoud El-Sherbiny

Professor of Geotechnical Engineering
Faculty of Engineering
Cairo University

Prof. Dr. Rami Mahmoud El-Sherbiny

Professor of Geotechnical Engineering
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

MODELING AND EVALUATION OF STRIP FOOTINGS ON ANCHORED GEOSYNTHETIC REINFORCED SOIL OVERLAYING LOOSE SAND

By

Mohamed Kamal Hussein Mohamed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSPHY**

in CIVIL ENGINEERING – PUPLIC WORKS

Approved by the Examining Committee

Prof. Dr. Mohamed Ibrahim Amer	Thesis Main Advisor
	. 1 .
Prof. Dr. Rami Mahmoud El-Sherbiny	Advisor
Prof. Dr. Hussein Hamed El-Mamlouk Internal Examiner	
Prof. Dr. Fathallah El-Nahhas	External Examiner
Professor at Faculty of Engineering	

Professor at Faculty of Engineering, Ain Shams University

> FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

Engineer's Name: Mohamed Kamal Hussein Mohamed

Date of Birth: 31/1/1988 **Nationality:** Egyptian

E-mail: Mohamed.kamal88@hotmail.com

Phone: 0115-5476683

Address: 4, El lebeny St., Harm, Giza.

Registration Date: 01 /10/2013 **Awarding Date:**/2019

Degree: Doctor of Philosophy

Department: Civil Engineering - Public Works

Supervisors:

Prof. Dr. Mohamed Ibrahiem Amer Prof. Dr. Rami Mahmoud El-sherbiny

Examiners:

Prof. Dr. Mohamed Ibrahim Amer (Thesis Main Advisor)

Prof. Dr. Rami Mahmoud El-Sherbiny (Advisor)

Prof. Dr. Hussein Hamed El-Mamlouk (Internal Examiner)
Prof. Dr. Fathallah El-Nahhas (External Examiner)

(Professor at Faculty of Engineering, Ain Shams University)

Title of Thesis:

MODELING AND EVALUATION OF STRIP FOOTINGS ON ANCHORED GEOSYNTHETIC REINFORCED SOIL OVERLAYING LOOSE SAND

Key Words:

Shallow Foundations, Anchored Geosynthetic Reinforcement, Pullout Resistance, Passive Resistance, Reinforced Soil.

Summary:

This thesis presents the results of laboratory and numerical models to study the behavior of shallow footings resting on anchored geosynthetic reinforced dense soil overlying loose. Laboratory model tests are performed to study the effect of reinforcement length, reinforcement depth, number of layers, and anchorage condition on the performance of a strip footing on geosynthetic reinforced soil. Finite element verification is performed using Plaxis 2D and an additional parametric study is performed to numerically investigate the effect of reinforcement length, deadman height, deadman width, and geosynthetic stiffness for different anchored geogrid configurations. An analytical method is developed to calculate the tensile forces in the reinforcement and ultimate bearing capacity. The pullout resistance of the geogrid significantly increases when anchoring the edges due to the development of passive resistance on the deadman resulting in an increase in bearing capacity. Uniform strains are generated along anchored reinforcement compared to the bell-shaped strain curve for conventional reinforcement. The optimum reinforcement length is six times the footing width for conventional reinforcement, on the other hand, the optimum reinforcement length is equal to footing width plus reinforcement depth for anchored reinforcement.

Disclaimer

I hereby declare that this thesis is my original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name	:	Date:
Signature):	

Dedication

To the most loving and caring parents,

Kamal Hussein Mohamed and Nawal Hassan Ahmed

To my beloved wife,

Mai Samir Abo El Soud

To my beloved son and daughter,

Zeyad and Menna Allah

Thank you for giving me the tools to be successful in life and the motivation to use them.

Acknowledgments

The author is deeply indebted to Prof. Mohamed I. Amer, Professor of Soil Mechanics and Foundation Engineering at the Faculty of Engineering, Cairo University, for his continuous supervision of the research and for his help and generous suggestions throughout the work.

Grateful acknowledgment and sincerest thanks and gratitude are due to Prof. Rami M. El-Sherbiny, Professor at the Faculty of Engineering, Cairo University, for his sincere support, valuable guidance, motivation, continuous hard work, fruitful positive discussions, and comments throughout the course of this study. The author would like to thank his distinguished supervisors for giving him this opportunity; it was a most rewarding experience, both professionally and personally.

The author also wishes to express his gratitude and appreciation to professors, colleagues, staff and technicians of the Soil Mechanics and Foundations Research Laboratory, Faculty of Engineering, Cairo University, for their support and encouragement.

Finally, another special appreciation is directed to my parents and my wife for their efforts, support, and help to create this thesis. This appreciation is also extended to include some of my family members, especially Hussein Kamal, Salma Kamal, Hassan Kamal, and Mona Mohamed. In addition, I cannot forget the support of some of my best friends and colleagues, especially Ahmed Saad, Mahmoud Ali, Islam Mamdouh, Ahmed Gomaa, Mohamed Abu Bakr, and Saad Medhat.

Table of Contents

	DIS	SCLAIMER	I
		DICATION	
		KNOWLEDGMENTS	
		ST OF TABLES	
		ST OF FIGURES MENCLATURE	
		STRACT	
СНАІ		ER 1: INTRODUCTION	
1	1.1	BACKGROUND	1
		PROBLEM STATEMENT	
		SCOPE AND OBJECTIVES OF THIS STUDY	
1	1.4	THESIS ORGANIZATION	3
CHAI	PTF	ER 2 : LITERATURE REVIEW	4
		INTRODUCTION	
2	2.2	EXPERIMENTAL STUDIES	4
		2.2.1 Reinforced Sand Soil Foundations	
		2.2.2 Reinforced Clay Soil Foundations	10
		$2.2.3\ Experimental\ Studies\ on\ Non-Conventional\ Reinforced\ Soil\ Foundation\$	13
2	2.3	ANALYTICAL STUDIES	16
		2.3.1 Binquet and Lee's Method (1975)	18
		2.3.2 Huang and Tatsuoka's Method (1990)	19
		2.3.3 Wayne et al.'s Method (1998)	21
		2.3.4 Michalowski's Method (2004)	22
		2.3.5 Sharma's Method (2009)	24
		2.3.6 Chen and Abu-Farsakh's Method (2015)	27
		2.3.7 Saha Roy and Deb's Method (2017)	29
2	2.4	NUMERICAL ANALYSIS	29
СНАІ	PTF	ER 3 : EXPERIMENTAL SETUP	32
3	3.1	INTRODUCTION	32
3	3.2	TEST DEVICE AND SETUP	32
		3.2.1 Tank Model	32
		3.2.2 Footing Model	33
		3.2.3 Loading Frame	33
		3.2.4 Load Cell	35

	3.2.5 Strain Gauge Installation	37
	3.2.6 Linear Voltage Displacement Transducer (LVDT)	38
	3.2.7 Data Acquisition System	38
3.3	CHARACTERIZATION OF TESTED SAND.	38
	3.3.1 Grain Size Distribution	38
	3.3.2 Maximum and Minimum Void Ratios	39
	3.3.3 Specific Gravity	39
	3.3.4 Modified Proctor Compaction Test	39
	3.3.5 Shear Strength Testing	40
3.4 3.5	CHARACTERIZATION OF TESTED GEOGRID	
	3.5.1 Conventional Geogrid Installation	45
	3.5.2 Wraparound Geogrid Installation	46
	3.5.3 Anchored Geogrid Installation	46
3.6	TESTING PROGRAM	49
СНАРТ	ER 4: TEST RESULTS AND ANALYSES	53
4.1 4.2	TYPICAL TEST RESULTS	
	4.2.1 Effect of Thickness of Dense Sand Without Reinforcement	54
	4.2.2 Effect of The Number of Reinforcement Layers	54
	4.2.3 Effect of Reinforcement Length	55
	4.2.4 Effect of Thickness of Reinforced Dense Sand	60
	4.2.5 Strain Distribution along Reinforcement	62
4.3	RESULTS OF ANCHORED GEOGRID CONFIGURATION	70
	4.3.1 Effect of Reinforcement Length	70
	4.3.2 Effect of Deadman Height	75
	4.3.3 Effect of Reinforcement Depth	76
	4.3.4 Strain Distribution along Reinforcement	80
	WRAPAROUND CONFIGURATION COMPARISON BETWEEN ANCHORED AND CONVENTIONAL CONFIGURATIONS	
СНАРТ	ER 5 : FINITE ELEMENT ANALYSIS	89
5.1	INTRODUCTION	89
5 2	CONSTITUTIVE MODELS	89

5.3	FINITE ELEMENT MESH	90
5.4	FINITE ELEMENT MODEL VERIFICATION	92
	5.4.1 Load Transfer Mechanism (Observed Deformation)	93
	5.4.2 Load Displacement Behavior	96
	5.4.3 Tensile Force along Reinforcement	101
5.5	PARAMETRIC STUDY	105
	5.5.1 Effect of Reinforcement Length	106
	5.5.2 Effect of Deadman Height	110
	5.5.3 Effect of Deadman Width	114
	5.5.4 Effect of Geogrid Stiffness	116
CHAPT	TER 6: ANALYTICAL SOLUTION	118
6.	ANALYSIS OF EQUILIBRIUM CONDITIONS	118
6.2	MOBILIZATION OF EARTH PRESSURE ON DEADMAN	120
6.3	FORMULATION OF ANALYTICAL APPROACH	122
6.4	COMPARISONS BETWEEN TEST RESULTS AND ANALYTICAL SOLUTIONS	124
CHAPT	TER 7: FINITE ELEMENT FOR SOFT CLAY	127
7.	INTRODUCTION	127
7.2	CONSTITUTIVE MODELS	127
7.3	FINITE ELEMENT RESULTS	128
7.4	APPLICABILITY OF ANALYTICAL APPROACH ON SOFT CLAY	132
CHAPT	TER 8: CONCLUSIONS AND RECOMMENDATIONS	134
8.	CONVENTIONAL GEOGRID CONFIGURATIONS	134
8.2	2 ANCHORED GEOGRID CONFIGURATIONS	134
8.3	RECOMMENDATIONS FOR FUTURE RESEARCH	136
REFER	ENCES	137
APPEN	DIX : STRAIN GAUGE READINGS	142

List of Tables

Table 2.1: Coefficients of bearing capacity for reinforced soil (Michalowski, 2004)	1) 24
Table 3.1: Gradation index properties of tested sand	39
Table 3.2: Values of maximum and minimum void ratio of tested sand	40
Table 3.3: Shear Strength Parameters of Tested Sand.	41
Table 3.4: Properties of geogrid material.	43
Table 3.5: Testing Program	51
Table 3.6: Purpose of Testing Program	52
Table 5.1: HSM parameters for dense and loose sand	90
Table 5.2: Verification models configurations	93
Table 5.3: Experimental results versus numerical results for anchored geogrid	
configurations.	100
Table 5.4: Experimental and numerical tensile forces for anchored geogrid	
configurations	104
Table 5.5: Parametric study	107
Table 7.1: Mohr - Coulomb parameters for soft clay	

List of Figures

Figure 2.1: Variation of bearing capacity ratio BCRs versus reinforcement depth	0
ratio (d/B) at different foundation depth ratios (Shin et al., 2002)	9
Figure 2.2: The ratio of BCRs to BCR _u versus foundation depth ratio (D_f/B) at the	0
critical value of reinforcement depth (d/B)cr (Shin et al., 2002)	9
Figure 2.3: Stress distribution at a depth of 254 mm (1.67B) below the footing	11
(B/L: 1.0, D _f /B: 0.0 Applied stresses q=750 kPa)	11
Figure 2.4: Schematic model and photos of the square foundation on grid-anchor reinforced soil (Mosallanezhad et al., 2008)	14
Figure 2.5: Test setup for prestressed geosynthetic reinforced granular beds	
(Shivashankar and Jayaraj, 2014).	14
Figure 2.6: Distribution of settlement at the interface between reinforced granular	
bed and weak soil (Shivashankar and Jayaraj, 2014).	15
Figure 2.7: Footing resting on the geosynthetic-reinforced sand bed with	
wraparound ends (Kazi et al., 2015)	15
Figure 2.8: q_{Rs}/q_{Uu} versus settlement ratio (s/B) for reinforced soil for D/B = 0.3	
	16
Figure 2.9: Reinforcement Mechanisms	17
Figure 2.10: Modes of failure (after Binquet and Lee, 1975)	18
Figure 2.11: Stress distributions underneath strip footing and failure surface	
(Binquet and Lee, 1975)	20
Figure 2.12: Friction resistance against reinforcement pullout and variation of	
normal stresses (Binquet and Lee, 1975)	20
Figure 2.13: Modes of failure of reinforced sand (Huang and Tatsuoka, 1990)	21
Figure 2.14: Modes of failure for reinforced soil foundation (Wayne et al., 1998)	23
Figure 2.15: Soil collapse mechanism (Michalowski, 2004)	24
Figure 2.16: Failure mechanism of reinforced soil foundation (Sharma et al., 2009)	26
Figure 2.17: Simplified distribution of vertical settlement for sandy soil	
(Sharma et al., 2009)	27
Figure 2.18: Partial punching shear failure followed by general shear failure	
(Chen and Abu-Farsakh. 2015)	28
Figure 2.19: Diagrams of general shear failure zone (Chen and Abu-Farsakh. 2015).	28
Figure 2.20: Comparison between observed bearing capacity ratios for	
reinforced granular bed with single layer geogrid and geotextile	
reinforcement overlying weak soil (Shivashankar and Jayaraj,	
2014)	31
Figure 3.1: Tank model	32
Figure 3.2: Footing model	33
Figure 3.3: Schematic drawing of the test device	34
Figure 3.4: Arrangement of the test device	35
Figure 3.5: Hinge connection between horizontal beam and loading rod	35
Figure 3.6: Load Cell	
Figure 3.7: Installation steps of strain gauge	
Figure 3.8: Data Acquisition (GRAPHTIC GL 7000)	
Figure 3.9: Grain size distribution of used sand	
Figure 3.10: Results for Modified Proctor Test	40

Figure 3.11: Consolidated-drained triaxial tests results for dense sand	41
Figure 3.12: Consolidated-drained triaxial tests results for loose sand	42
Figure 3.13: Standard Test Method for Determining Tensile Properties of Hate ®	
23.142 GR reinforcement using Testometric Machine (ASTM	
D4595-86).	43
Figure 3.14: Tensile force versus strain for tested geogrid	44
Figure 3.15: Global strain versus local strain for tested geogrid	44
Figure 3.16: Global strain versus local strain for tested geogrid tested at different	
strain rates	45
Figure 3.17: Conventional Geogrid Configuration	47
Figure 3.18: Wraparound Configuration	
Figure 3.19: Anchored Geogrid Configuration	
Figure 3.20: Deadman installation.	48
Figure 3.21: Modular block configuration	49
Figure 4.1: Average stresses versus settlement curves for different thickness of	
dense sand	54
Figure 4.2: Average stresses versus settlement curves for the different number of	
layers	56
Figure 4.3: Failure modes of reinforced soil for conventional configuration with	
d=1.2B	57
Figure 4.4: Bearing capacity ratio versus the number of layers for conventional	
configuration with d =1.2B.	58
Figure 4.5: Average stresses versus settlement curves for a different	
reinforcement length.	59
Figure 4.6: Effect of geogrid length for conventional configuration with d =1.2B	
on the bearing capacity ratio	60
Figure 4.7: Average stresses versus settlement curves for reinforced sand and	
unreinforced sand with different thickness dense sand	61
Figure 4.8: Effect of reinforced soil thickness on the bearing capacity ratio at	
different settlement ratios for L/B=6 and N=3	61
Figure 4.9: Axial strains at the center versus settlement curves for a different	
reinforcement length and N=1	62
Figure 4.10: Axial strains at the center versus settlement curves for N=2, L=6B	
(C-2-6.0B-0.3-0.0)	63
Figure 4.11: Axial strains at the center versus settlement curves for N=3 and	
L=6B (C-3-6.0B-0.3-0.0)	63
Figure 4.12: Axial strains versus settlement curves for different locations	
(C-3-6B-0.3-0.0).	64
Figure 4.13: Axial strains versus settlement curves for different locations	<i></i>
(C-2-6B-0.3-0.0).	65
Figure 4.14: Axial strains versus settlement curves for different locations	
(C-1-6B-0.3-0.0).	66
Figure 4.15: Strain distribution along reinforcement for conventional	
reinforcement with various lengths and $N = 1$.	6/
Figure 4.16: Strain distribution along reinforcement for conventional	(0
reinforcement with various lengths and $N = 2$.	68
Figure 4.17: Strain distribution along reinforcement for conventional	60
reinforcement with various lengths and N = 3.	09
Figure 4.18: Average stresses versus settlement curves for anchored geogrid with	71
different reinforcement lengths for u=0.3B, and h _d = 2u	/ 1

-	Average stresses versus settlement curves for anchored geogrid with	72
	different reinforcement lengths for u=0.6B, and h _d = u	12
Figure 4.20:	Effect of reinforcement length for anchored geogrid configuration on the bearing capacity ratio for single layer for $u=0.3B$, and $h_d=2u$	72.
Figure 4 21.	Deformation of anchored geogrid configuration	
	Load transfer mechanism for anchored geogrid configuration	
-	Effect of reinforcement length for anchored geogrid configuration on	/ 4
11guic 4.23.	the bearing capacity ratio for single layer of $u = 0.6B$, and $h_d = u$	75
Fi 4 24.		13
Figure 4.24:	Average stresses versus settlement curves for anchored geogrid with	70
F: 405	a different deadman height for $L = 1.5B$ and $u = 0.6B$	/6
Figure 4.25:	Effect of deadman height on the bearing capacity ratio for a single	
T: 106	J	77
Figure 4.26:	Average stresses versus settlement curves for anchored geogrid with	
	a different first layer depth for $L = 1.0B$ and constant deadman	
	height	78
Figure 4.27:	Average stresses versus settlement curves for anchored geogrid with	
	a different first layer depth, L = 1.5B and constant deadman height	78
Figure 4.28:	Effect of reinforcement layer depth on the bearing capacity ratio for	
	a single layer for L=1.0B and constant deadman height	79
Figure 4.29:	Effect of reinforcement layer depth on the bearing capacity ratio for	
	a single layer for $L = 1.5B$ and constant deadman height	80
Figure 4.30:	Axial strains at center versus settlement curves for anchored geogrid	
C	with a different reinforcement length, $u = 0.3B$, and $h_d = 2u$	81
Figure 4.31:	Axial strains at center versus settlement curves for anchored geogrid	
υ	with a different reinforcement length, $u = 0.6B$, and $h_d = u$	81
Figure 4 32.	Axial strains at center versus settlement curves for anchored geogrid	
8	with a different deadman height, $L = 1.5B$ and $u = 0.6B$	82
Figure 4 33.	Axial strains at center versus settlement curves for anchored geogrid	~ _
118011	with a different first layer depth, L=1.0B, and constant deadman	
	height	82
Figure 4 34.	Axial strains at center versus settlement curves for anchored geogrid	02
1 iguic 4.54.	with a different first layer depth, $L = 1.5B$, and constant deadman	
	height	83
Figure 4.35:	Strain distribution along reinforcement for anchored geogrid with	05
riguic 4.55.	a different reinforcement length, $u = 0.3B$, and $h_d = 2u$	Q1
Eigura 4 26.	Strain distribution along reinforcement for anchored geogrid with	04
11guit 4.30.		05
Eigung 4 27.	a different reinforcement length, u = 0.6B, and h _d = u	83
Figure 4.3 /:	Strain distribution along reinforcement for anchored geogrid with	0.5
г. 420	a different deadman height, $L = 1.5B$, and $u = 0.6B$	83
Figure 4.38:	Strain distribution along reinforcement for anchored geogrid with	
	a different first layer depth, $L = 1.0B$ and constant deadman	0.0
E: 4.20	height	86
Figure 4.39:	Strain distribution along reinforcement for anchored geogrid with	~ -
	a different first layer depth, L=1.5B and constant deadman height	87
Figure 4.40:	Average stresses versus settlement curves for wraparound geogrid	
	with a different geogrid length of d=1.2B and u=0.6B	
	Ultimate bearing capacity ratio for different configurations	
Figure 5.1: N	Model Geometry	91
	Гуріcal Finite Element Mesh	
Figure 5.3: A	Average stresses versus settlement for different mesh densities	92

Figure 5.4: E	Effective vertical stresses	. 94
	Effective horizontal stresses	
	Effective normal stresses on internal deadman side	
	Geogrid vertical displacements	
Figure 5.8: C	Geogrid axial forces	. 95
Figure 5.9: L	Deformed Mesh	. 96
Figure 5.10:	Vertical Displacements	. 96
Figure 5.11:	Model verification for anchored geogrid with a different	
	reinforcement length for $u = 0.3B$, and $h_d = 2u$. 97
Figure 5.12:	Model verification for anchored geogrid with a different	
	reinforcement length for $u = 0.6B$, and $h_d = u$. 98
Figure 5.13:	Model verification for anchored geogrid with a different deadman	
	height for L=1.5B, and u=0.6B	. 99
Figure 5.14:	Model verification for anchored geogrid with a different	
	reinforcement length for $u = 0.9B$, and $h_d = 0.67u$	100
Figure 5.15:	Experimental results versus numerical results for anchored geogrid	
	\mathcal{E}	101
Figure 5.16:	Model verification for strain distribution along reinforcement for	
	anchored geogrid with a different reinforcement length, $u = 0.6B$,	
	and $h_d = 1.0u$	102
Figure 5.17:	Model verification for strain distribution along reinforcement for	
	anchored geogrid with a different deadman height, L=1.5B, and u	
	=0.6B	103
Figure 5.18:	Model verification for strain distribution along reinforcement for	
	anchored geogrid with a different reinforcement length, $u = 0.9B$,	
	and $h_d = 0.67u$	104
Figure 5.19:	Experimental and numerical tensile forces for anchored geogrid	
T:	configurations	105
Figure 5.20:	Average stresses versus settlement curves for anchored geogrid with	
	a different reinforcement length for $B = 0.3m$, $d = 0.2m$, $u = 0.2B$,	400
F: 5.01		108
Figure 5.21:	Average stresses versus settlement curves for anchored geogrid with	
	a different reinforcement length for $B = 0.3m$, $d = 0.2m$, $u = 0.3B$,	100
F: 5.00	and $h_d = u$.	108
Figure 5.22:	Average stresses versus settlement curves for anchored geogrid with	
	a different reinforcement length for $B = 0.3m$, $d = 0.2m$, $u = 0.4B$,	100
E: 5.22	and $h_d = u$.	109
Figure 5.23:	Average stresses versus settlement curves for anchored geogrid with	
	a different reinforcement length for $B = 1.0$, $d = 0.7$ m, $u = 0.3$ B, and	100
F: 5 24.		109
Figure 5.24:	Effect of reinforcement length for anchored geogrid with a different	
	reinforcement depth on the bearing capacity ratio for d/B= 0.7 and h _d =u.	110
Eigura 5 25.		110
rigule 3.23.	Average stresses versus settlement curves for anchored geogrid with	
	a different deadman height for B=0.3m, d= 0.2m, u=0.2B, and I=B+n	111
Figure 5 26.	L=B+u. Average stresses versus settlement curves for anchored geogrid with	111
riguit 3.20.	a different deadman height for B=0.3m, d= 0.2m, u=0.3B, and	
		112
	1 1 1 1 1 1 1 1 1 1	114