

Postoperative Complications of the Lateral Approach vs the Posterior Approach of Primary Total Hip Arthroplasty; Systematic Review/Meta-Analysis

Submitted for Partial Fulfillment of Master Degree in **Orthopedic Surgery**

Submitted by

Mohamed Magdy Ahmed Fouad

M.B.B.CH Faculty of Medicine – Ain Shams University

Supervised by

Prof. Dr. Amr Khairy Mahomoud Abdel Aziz

Head of the Orthopedic Surgery Department Faculty of Medicine – Ain Shams University

Dr. Waleed El Sayed Abdel Aleem El Shabrawy

Lecturer of Orthopedic Surgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Prof. Dr. Amr Khairy**Mahomoud Abdel Aziz, Head of the Orthopedic Surgery Department, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Dr. Waleed El**Sayed Abdel Aleem El Shabrawy, Lecturer of
Orthopedic Surgery, Faculty of Medicine, Ain
Shams University, for his sincere efforts, fruitful
encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mohamed Magdy Ahmed Fouad

Tist of Contents

Title	Page No.
List of Tables	5
List of Figures	6
Introduction	1 -
Aim of the Work	14
Review of Literature	15
Materials and Methods	51
Results	56
Discussion	67
Summary	71
Conclusion	72
References	73
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	The most frequently used approach replacement	_
Table (2):	Illustration of data of the studies us review	
Table (3):	Harris hip score	59
Table (4):	Fracture rate	60
Table (5):	Dislocation rate	61
Table (6):	Infection rate	62
Table (7):	Heterotropic ossification	64
Table (8):	Trendelenburg gait	65

List of Figures

Fig. No.	Title	Page No.	
Figure (1):	Different approaches of tota replacement	-	
Figure (2):	Cross sectional view of hip joint		
Figure (3):	Showing anatomy of femoral hea		
8	acetabulum		
Figure (4):	(a) Normal femoral neck angle (b		
8	vara, (c) coxa valga		
Figure (5):	Normal mean angle of femoral necl		
J	according to age ^[19]		
Figure (6):	Showing the femoral version		
Figure (7):	Vascular supply of femoral head	20	
Figure (8):	Showing ligaments of hip joint	21	
Figure (9):	Vessels around the hip	23	
Figure (10):	Different muscle groups acting on the hip		
	joint [23]		
Figure (11):	Muscles of the hip joint	26	
Figure (12):	(A) Patient with a ne	egative	
	Trendelenburg sign. (B) Patient	with a	
	positive Trendelenburg sign indica		
	a weak gluteus medius muscle		
	left. [24]		
Figure (13):	Free-body diagram for the calcula		
	the hip joint force while walking		
Figure (14):	Effect of lever arm ratio on the hi		
T. (15)	reaction force ^[26]		
Figure (15):	Hip joint forces while using a cane		
Figure (16):	Showing posterior approach		
Figure (17):	(a) Patient set up with suppor		
	positioning in lateral decubitus po		
	(c) Skin incision for the po		
	approach. ^[29]	36	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure (18):	a) Incising the tensor fascia latabluntly splitting the muscle proximally. (b) Short external re (SER) and piriformis tendon extogether with sciatic nerve. (c incision along the superior border piriformis tendon and then distally the SER leaving a cuff of tissue to the quadratus back to. (d) Stay suppiriformis tendon. Reflected pirit capsule and SER to expose for head ^[29]	fibres otators exposed The of the valong repair ture in eformis emoral
Figure (19):	(a) Femoral neck osteotomy performance Anterior capsule is seen clearly. (In retaining retractor, with an anterior inferiorly positioned soft retractors, allow a concircumferential view of acetabulum.(c) insertion of centacetabular component. (d) Exposition	ormed. (b)Selfor and tissue mplete the nented ure of emoral emoral
Figure (20):	(a) Repair of piriformis tendon. (b) external rotators layer fully repair Final skin closure. [29]	Short red. (c)
Figure (21):	Showing lateral approach	

Tist of Figures cont...

<u></u>		Page No.
	(a) Set up for the Hardinge appropriate (a) Set up for the Hardinge appropriate (a) Skin incision; (c) fascia exposed; incised. While typically the released in a linear fashion, in done with a slight posterior cublack arrow). With the fascia laretracted, the gluteus medius are	(d) fascia fascia is t can be urve (see ata layer
Figure (23):	lateralis layer can be seen clearly (a) Bursa. (b) Gluteus medius. (c) of anterior portion of gluteus tendon (along black line). Thi Hardinge approach in who proximal release, sparing the part of the gluteal muscles, is must the anterior proximal part of the lateralis layer. (d)Shows the 'far	Incision medius s is the ich the posterior ade with se vastus n-shaped'
Figure (24):	(a) Incising anterior part of medius tendon. (b) Extending distally into vastus latera	ero-distal half to eased in

Tist of Figures cont...

Fig. No.	Title	Page	No.
Figure (25):	(a) Femoral neck exposed. (dislocated. (c) Leg bag used for or	perative	4.57
Figure (26):	side leg ^[34]	ny. (b) tabulum	47
Figure (27):	prepared for implant (d) Docemented acetabular component (a) Box chisel to start prepar proximal femur. (b) Rasping the pfemur. (c) Trial inserted. (d) Docement (d) Docement (e) Trial inserted.	ing the oroximal	49
Figure (28):	cemented femoral stem implanted This shows the closure of the a	[[34]	50
Figure (29):	layer, fascia and skin. [34] PRISMA (Preferred reporting it systemic Reviews and Meta-a	ems for	
Figure (30):	flow diagram study selection Comparison between lateral a and posterior approach refractions	pproach garding	
Figure (31):	fracture Comparison between lateral a and posterior approach re	pproach garding	
Figure (32):	dislocation	pproach garding	
Figure (33):	Comparison between lateral a and posterior approach re	pproach garding	
Figure (34):	heterotropic ossification Comparison between lateral a and posterior approach re- trendelenburg gait	pproach garding	

Introduction

otal hip arthroplasty is used widely around the world as one of the most effective operations for relieving pain, restoring hip function, and improving quality of life with painful or deformed hip joints [1,2]. Total hip replacement (THR) has been described as the 'operation of the century^[3] and has provided long-lasting pain relief, reliable and improved clinical function and enhanced the quality of life for millions of patients with arthritic, and painful hips.

Successful hip replacement begins with careful patient selection, implant choice and preoperative planning. Central to the planning process is the decision as to which surgical approach to utilize.

The development of total hip replacement (THR) began in the 1950s with Charnley's low-friction arthroplasty^[4,5]. After years of improvement, THA is now considered one of the most reliable surgical interventions.

In 2010, an estimated 2.5 million individuals in the USA were living with THA, and nearly 330,000 THA were being performed annually^[6,7]. A significant increase in THA demand is expected over the next few years [8,9].

Many surgical approaches for performing a primary THR have been described, each has its own technical challenges with various strengths and drawbacks.

The choice of the approach is influenced by the surgeon's training and experience and it have been debated over which approach is the best. However, there are many other factors such as case complexity, existence of previous surgical scar, fixed deformity, and soft tissue contracture that need to be addressed within the operation.

The ideal surgical approach to the hip should be relatively easy, allow for early functional recovery, and, most importantly, generate the fewest complications such as dislocation, blood loss, nerve injury and pain.

should address any complexity, while providing It circumferential exposure of the acetabulum and the proximal femur to ensure good component fixation with optimum positioning and alignment with the protection of the surrounding soft tissues, specially the sciatic nerve and femoral neurovascular bundle.

In the 2015 National Joint Registry annual report, the commonest surgical approach chosen was the posterior approach, accounting for 62% of cases followed by the lateral (Hardinge) approach, accounting for 36% of cases^[10]

Dislocation is a common complication of total hip arthroplasty, but the exact effect of surgical approach on dislocation rates remains unclear. It is a leading cause of morbidity following hip arthroplasty because revision surgery is eventually required in 20-66% of cases^[11,12,13]

There are 4 commonly used surgical approaches to the hip: the anterior, lateral [anterolateral (Hardinge) and direct lateral (Watson-Jones)], and posterior approaches shown in Figure (1) and Table (1). Each one is different from the other in anatomy, technical aspects, outcome and complications.

However, there is no current consensus regarding which approach is the most suitable.

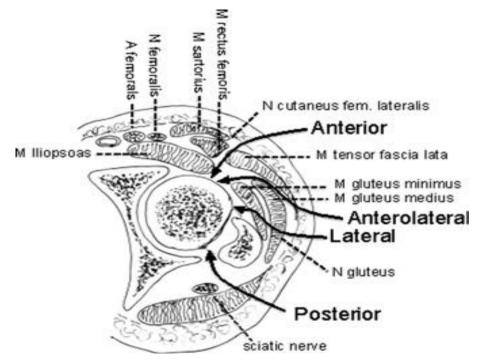


Figure (1): Different approaches of total hip replacement.

Table (1): The most frequently used approaches in hip replacement

	Anatomic dissection	Authors	MIS authors
Posterior	Split of m. gluteus maximus	Langenbeck, Kocher, Moore	Wenz, Sculco, Roth, Nakamura
Lateral	Split of m. gluteus medius	Bauer, Hardinge, Learmonth	Berger, Higuchi
Anterolateral	Interval between m. gluteus medius and m. tensor fasciae latae	Watson Jones, McKee Farrar	Röttinger, Jerosch, Pfeil
Anterior	Interval between m. tensor fasciae latae and m. sartorius	Smith- Peterson, Hüter, Judet	Lesur, Keggi, Matta, Rachbauer

AIM OF THE WORK

e conducted this study to compare various clinical outcomes and complication rates across the 2 approaches which may influence surgeon choice in the future and to identify which approach is the best for THA.

REVIEW OF LITERATURE

Anatomy of the hip joint:

The hip is a ball-and-socket joint. It meets all the properties of a synovial diarthrodial joint as it has a joint cavity, joint surfaces covered with articular cartilage, it has a synovial membrane producing synovial fluid, and it is surrounded by a ligamentous capsule [14]

The hip joint stability depends on bony, ligamentous and muscular anatomy.

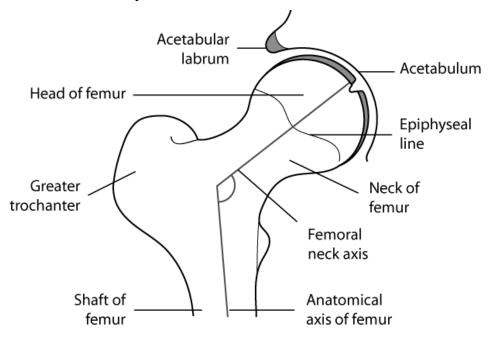


Figure (2): Cross sectional view of hip joint