Detection of drug resistant mycobacterium tuberculosis using genotypic method in positive cases admitted in Abbassia Chest Hospital

Thesis

Submitted for partial fulfillment of MD Degree in chest diseases

By

Dr. Asmaa Ali Abd El-Reheem

(MSc, Bc.ch Ain Shams University)

Supervised by

Prof. Aya Mohamed Mohamed Abdel Dayem

Professor of Chest Diseases

Ain Shams University

Prof. Omaima Mohamed Ahmad Hassanin

Professor of clinical Pathology

Ain Shams University

Prof. Samar Hassan El-Sharkawy

Professor of Chest Diseases

Ain Shams University

Dr. Rehab Maher

Lecturer of Chest Diseases

Ain Shams University

Faculty of Medicine

2019

Acknowledgment

First of all thanks to ALLAH for helping me to achieve this work.

I would like to express my appreciation and gratitude to *Prof. Aya Abdel Dayem;* Professor of Chest Diseases; Ain Shams University, for her continuous encouragement, excellent assistance, valuable guidance and generous support through this work.

I'm really grateful to *Prof. Omaima Hassanin*; Consultant of clinical Pathology; Ain Shams University, for her kind supervision, patience and moral support through this work.

I'm also greatly indebted to *Prof. Samar El-Sharkawy*; professor of chest disease, Ain Shams University, for her keen support through this work.

Great appreciation to *Dr. Rehab Maher;* Lecturer of Chest Diseases, Ain Shams University for her help and guidance.

Finally, I would like to thank all my family and friends for their help and love.

List of contents

Contents	Page
List of content	I
List of tables	II
List of figures	IV
Abbreviations	V
Introduction	1
Aim of the work	5
Review chapter 1	6
Review chapter 2	38
Subjects and methods	89
Results	108
Discussion	125
Summery and conclusion	141
Recommendation	150
Reference	151
Arabic summery	_

List of tables

No	Title	Page
1	Estimates of the burden of the disease caused by	15
	TB in Egypt	
2	Incidence, notification and case detection rates	16
	in Egypt	
3	Testing for MDR-TB and number of confirmed	16
	cases of MDR-TB in Egypt	
4	Demography of the studied patients	109
5	Comorbidity and precipitating factors of the	113
	studied patients	
6	Complains of patients	114
7	X-ray finding of patients	114
8	Laboratory finding of patients	115
9	Virology profile of patients	116
10	Molecular and culture detection of MDR TB in	117
	patents' positive sputum sample	
11	Performance of molecular methods for MDRTB	119
	detection from positive sputum sample	
12	Patients characters associated with infection	120
	with DR TB	
13	Smoking and addiction habits associated with	122
	DR TB infection	
14	Comorbidity associated with DR TB patients	123
15	Laboratory finding associated with DR TB	126
	infection	
16	Viral infection associated with DR TB infection	128

List of figures

No	Title	Page
1	Egyptian mummy in the British Museum:	7
	Tubercular decay has been found in the spines	
	of Egyptian mummies	
2	Strip contains reaction zones	100
3	Bibby Scientific TM Techne TM TC-312 Thermal	101
	Cycler	
4	rpoB gene (Wild type and mute band)	103
5	katG and inhA gene (Wild type and mute	104
	band)	
6	Drug resistance profile by molecular methods	117
7	Drug resistance profile by culture methods	118
8	Relation of gender with DR TB infection	121
9	Contact history to patients with MDR TB	124
	infection.	
10	Hb level in both groups	127

Abbreviations

AFB	Acid fast bacilli
Ag	Antigen
AII	Airborne infection isolation
AMK	Amikacin
AMTD	Amplified mycobacterium
	tuberculosis direct test
BSA	Bovine serum albumin
CAP	Capreomycin
CDATs	Commercial direct amplification
	Tests
CFP	Culture filtrate protein
CRP	C-reactive protein
CT	Computed tomography
Ct	Cycle threshold
DNA	Deoxy ribo nucleic acid
dNTPs	Deoxynucleoside triphosphates
DOTS	Directly observed therapy strategy
DR	Direct repeat
DST	Drug susceptibility test
EDTA	Ethylene diaminete traacetic acid
ELISA	Enzyme-linked immunosorbent
	Assay
ELISPOT	Enzyme-linked immunospot

EMB	Ethambutol
EQA	Eternal quality assurance
ESAT	Early secretary antigenic target
ESR	Erythrocyte sedimentation rate
ETR	Exact tandem repeat
FDA	Food and drug administration
FNAB	Fine needle aspiration biopsy
FQ	Fluroquinolones
Hb	Hemoglobin
HIV	Human immunodeficiency virus
HPLC	High performance liquid Chromatography
HPTLC	High performance thin liquid Chromatography
IFN	Interferon
IGRAs	Interferon gamma release assays
INH	Iso nicotinic acid hydrazide
IS	Insertion segment
IUATLD	International union against
	tuberculosis and lung disease
KAN	Kanamycin
KDa	Kilo dalton
LJ	Lowenstein-jensen
LAM	Lipo-arabinomannan

LAMP	Loop-mediated isothermal amplification
LPA	Line probe assay
LTBI	Latent tuberculosis infection
MDDR	Molecular detection of drug
MDR	resistance Multiple drug resistance
MGIT	Mycobacterial growth indicator tube
MIRU-VNTR	Mycobacterial interspersed repetitive-unit-variable-number tandem-repeats
MLVA	Multi locus variable-number tandem-repeat analysis
MODS	Microscopic observation of drug susceptibility assay
MPTR	Major polymorphic tandem repeat
mRNA	Messenger ribonucleic acid
MTB	Mycobacterium tuberculosis
MTBC	Mycobacterium tuberculosis complex
NAA	Nucleic acid amplification
NPV	Negative predictive value

NRA	Nitrate reductase assay
NTPs	National TB programmes
PAS	Para-amino salicylic acid
PCC	Probe check control
PCR	Polymerase chain reaction
PGRS	Polymorphic guanine-cytosine rich sequence
PPD	Purified protein derivative
PPV	positive predictive value
PSQ	Pyrosequencing
PZA	Pyrazinamide
PZase	Pyrazinamidase enzyme
QFT-Gold	Quanti feron-TB gold
RFLP	Restriction fragment length
	Polymorphism
RIF	Rifampicin
RMF	Rifampicin
RNA	Ribonucleic acid
RRDR	Rifampin resistance determining
	Region
rRNA	Ribosomal ribonucleic acid
RR-TB	Rifampicin resistance tuberculosis
SBE	Single-base extension

SGOT	Serum glutamate oxaloacetate
	Transaminase
SGPT	Serum glutamate pyruvate
	Transaminase
SM	Streptomycin
SNPs	Single nucleotide polymorphism
SPC	Sample processing control
SuPAR	Soluble urokinase type
	plasminogen activator receptor
ТВ	Tuberculosis
TMA	Transcriptase-mediated
	Amplification
TNF	Tumor necrosis factor
TST	Tuberculin skin test
WBC	White blood cells
WGS	Whole genome sequencing
WHO	World Health Organization
XDR	Extensive drug resistance
ZN	Ziehl-Neelsen

Introduction

In developing countries, tuberculosis (TB) considered as a foremost infectious disease that killing nearly 2 million person every year. The incidence of Mycobacterium tuberculosis resistance specially towered the first line treatment was increased and contributed in the present TB epidemic. (WHO, 2014)

of the organization efforts In in infection, TB controlling the mortality and morbidity of it still high. From all factors that associated with its spread, the expansion of human immunodeficiency virus (HIV) infection was the major one as it increases the possibility of TB strains to become resistance. (WHO, 2014)

Another vital cause that facilitating the spread of new strains is imagination from countries with higher incidence to another with low, besides the overcrowding in hospitals and other public places, expansion of population and spread of poverty, intravenous drug abuse and homelessness. (WHO, 2014)

Patients with active state (sputum positive) are the main source for infection spread. (WHO, 2014)

Drug resistance towered the first line regimen is defined as drug resistance TB (DR-TB), which include multi drug resistance form (MDR-TB) while the strains is resisance at least isoniazid (INH) and rifampcin (RIF). (WHO, 2014)

The TB susceptible patients showed successful response towered their regimens depend many involved factors as drug combination, duration, side effect and costs. The conversion state from positive to negative sputum within 2 month of treatments is considered as good sign for improvement, beside radiological and clinical picture, on the other hand positive sputum culture after 4 month of treatment denote failure treatment. (ATS, 2003)

Incomplete treatment or interrupted one shard in developing acquired resistance, while primary resistance happens with infection by resistance strain from the begging. (ATS, 2003)

to lack of commitment with adequate protocol, the acquired regimen resistance developed, and thus spread of resistance strain from patients to another become easy which lead to primary resistance. Some factors development of drug resistance with as nonadherence to therapy; due to its longer duration, several combinations and side effects, co infection with HIV and poor resources. (WHO, 2014)

infection; whatever pulmonary or TB usually diagnosed is by clinical pulmonary, suspicious which followed bv SO manv investigation tools to confirm it as chest radiology, direct smear evaluation for Acid fact bacilli (AFB), sputum culture in liquid and solid one, and nucleic detection of TB using acid bacteria PCR hybridization and amplification. (Mitchison, 2005)

Diagnosis of TB or drug resistance TB improved recently either by using conventional (phenotypic) and molecular (genotypic) methods. (WHO, 2014)

The conventional DST technique needs culture of organisms and evaluate their growth in

the presence of anti-TB drugs, while molecular (genotypic) DST methods depend on detecting the resistance associated mutation in specific gene of organism without any need for bacterial growth evaluation, so it can be happen rapidly and with any specimen type. (Palomino, 2005)& (Traore et al, 2006)

Aim of the work

The study designed to investigate the genetic mutation in TB organisms that responsible for drug resistance pattern that isolated from patients with positive sputum aiming for early detection of MDR-TB.