

Role of Quantiferon Gold Assay in Detection and Follow-up of treatment of Latent Tuberculosis infection in some of acquired immune compromised patients

Thesis

Submitted for Partial Fulfillment of MD Degree In Chest Diseases and Tuberculosis

By

Azza Hassan Hassan

M.Sc. of Chest Diseases and Tuberculosis
Ain Shams University

Supervised by

Prof. Dr.Emad Eldin Abdel Wahab Korraa

Professor of Chest Diseases and Tuberculosis Faculty of Medicine - Ain Shams University

Prof. Dr. Ibrahim Aly Dwedar

Professor of Chest Diseases and Tuberculosis Faculty of Medicine - Ain shams University

Dr. Eman Badawy Abdel Fattah

Assistant Professor of Chest Diseases and Tuberculosis Faculty of Medicine - Ain shams University

Acknowledgement

Chapter 1 The only thanks to ALLAH, who enabled me to carry out this work, and every work.

Chapter 2 Great appreciation to **Prof. Emad Eldin Abdel Wahab Korraa, Professor of Pulmonology, Ain shams University.** He continuously followed my work and pushed me forward.

My deep and sincere gratitude to *Prof. Ibrahim Aly Dwedar, Professor of Pulmonology, Ain Shams University.* His advices, support and encouragement have been invaluable throughout the work.

Fattah, Assistant Professor of Pulmonology, Ain Shams University. She has continuously revised and evaluated my work with a combination of scientific advices and encouraging words. She has been hand in hand with me throughout all phases of this work.

Azza Hassan

List of Contents

	Title Page
•	List of Abbreviations
•	List of TablesV
•	List of Figures VIII
•	Introduction
•	Aim of the Work6
•	Review of Literature
	- Tuberculosis
	o Microbiology of TB37
	o Pathogenesis of TB41
	o TB transmission and control53
	- Latent Tuberculosis Infection
	developing TB disease
	(QFT-GIT)
	Treatment of LTBI
	- Diabetes Mellitus and TB Infection 105
	- Human Immune-deficiency virus and Tuberculosis 108
	- Corticosteroids and Immunity121
•	Subjects and Methods
•	Results
•	Discussion
•	Summary and Conclusion
•	Recommendations
•	References
•	Arabic Summary

# P	.P value
ACE	.Angiotensin-converting enzyme
acr	. Alpha-crystallin-like heat shock protein
ADA	.American Diabetes Association
AFB	.Acid Fast Bacilli
AIDS	.Acquired immunodeficiency syndrome
AII	.Airborne infection isolation
ALT	. Alanine Aminotransferase
AP	Activator protein
AST	.Aspartate Aminotransferase
ATS	.American thoracic society
BAL	.Bronchoalveolar lavage
BALB/c	.Bagg Albino (In bred research mouse strain)
BCG	.Bacillus Calmette–Guérin
ВМІ	.Body mass index
СВС	.Complete blood count
CDC	.Center of disease control and prevention
CFP-10	.Culture filtrate Protein-10
CFU	.Colony forming units
cmaA2	.cyclopropane-mycolic acid synthase 2
cox	.Cyclooxygenase
CR	.Complement receptor
СТ	.Computed tomography
CTL	.Cytotoxic T lymphocyte
DM	.Diabetes mellitus
DM-TB	.Diabetic and tuberculosis

DN	double negative
DOT	.Directly observed therapy
DTH	.Delayed-type hypersensitivity
ELISA	.Enzyme-linked immunosorbent assays
ESAT-6	.Early secretory antigenic target-6
ESR	.Erthrocyte sedimentation rate
ESX-1	Early secretory antigenic target secretion system 1
FBG	.Fasting blood glucose
FDA	.Food and drud administration
GREs	.Glucocorticoids responsive elements
gp	.glycoprotein
HbA1c	.Glycosated hemoglobin
HCWs	.Health care workers
HEPA	.High Efficiency Particulate Air
HIV	.Human immunodeficiency virus
HLA Class	.Human Leukocyte Antigen
ICL	.Isocitrate lyase
IDDM	. insulin dependent diabetes mellitus
IFG	.Impaired fasting glucose
IFN	.Interferon
IgE	.Immunoglobulin E
IgM	.Immunogloubin M
IGRA	.Interferon gamma release assay
IGT	.Impaired glucose tolerance
IL	.Interleukotriens
INH	.Isoniazid

Ipr1	Intracellular pathogen resistance 1
LAM	Lipoarabinomannan
LTBI	Latent tuberculosis infection
LppX	LipoproteinX
LRTIs	Lower respiratory tract infections
MAPK	mitogen-activated protein kinase
Mce	Mycobacterial cell entry protein
мсн	Major histocompatibility complex
MDR	Multi Drug Resistance
Msr	methionine sulfoxide reductase
MTB	Mycobacterial tuberculosis
NF-kB	nuclear factor-kappa-B
NIDDM	non- insulin dependent diabetes mellitus
NOS2	Inducible nitric oxide synthase
NRP	non replicating persistent
NTM	Non-tuberculous mycobacteria
NTP	National Tuberculosis Program
PBMCs	Peripheral blood mononuclear cells
рсаА	cyclopropane synthase gene
PCR	Polymerase chain reaction.
PDIM	Phthiocerol dimycocerosates
PGL	Phenolic glycolipid
PLA2	phospholipase A2
PPD	protein purified derivative
PPG	Post prandial glucose
PZA	pyrazinamide

QFT-G	Quantiferon Gold assay test
QFT-2G	. Quantiferon second generation
QFT-GIT	Quantiferon gold assay test in tube
QFT-TB	Quantiferon –Tuberculosis
RANTES	Regulated on Activation, Normal T Cell Expressed and Secreted
RD1	Region of difference 1
RIF	Rifampin
RNIs	Reactive nitrogen intermediates
ROIs	Reactive oxygen intermediates
RPT	Rifapentine
SCID	Sever combined immunodeficient
SD	Standard deviation
SLAP1	src-like adapter protein-1
TAP	transporter associated with antigen processing
TAT	Twin arginine transporter
тв	Tuberculosis
тв	Tuberculosis Thiophen-2-carboxylic acid hydrazide
ТВ ТСН	
TB TCH TCR	Thiophen-2-carboxylic acid hydrazide
TB TCH TCR TDM	Thiophen-2-carboxylic acid hydrazide T Cell Receptor
TB TCH TCR TDM TGF-beta	Thiophen-2-carboxylic acid hydrazide T Cell Receptor Trehalose dimycolate glycolipid
TB TCH TCR TDM TGF-beta THP Cells	Thiophen-2-carboxylic acid hydrazideT Cell ReceptorTrehalose dimycolate glycolipidtransforming growth factor-beta
TB TCH TCR TDM TGF-beta THP Cells	Thiophen-2-carboxylic acid hydrazideT Cell ReceptorTrehalose dimycolate glycolipidtransforming growth factor-betaHuman Monocytic Cell
TBTCHTCRTDMTGF-betaTHP CellsTLR	Thiophen-2-carboxylic acid hydrazideT Cell ReceptorTrehalose dimycolate glycolipidtransforming growth factor-betaHuman Monocytic CellToll-like receptors
TBTCHTCRTDMTGF-betaTHP CellsTLRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Thiophen-2-carboxylic acid hydrazideT Cell ReceptorTrehalose dimycolate glycolipidtransforming growth factor-betaHuman Monocytic CellToll-like receptorsTumor necrosis factor

List of Tables

Table No.	Title	Page
Table (1):	TB situation in Egypt (cases notification and burden)	11
Table (2):	TB situation in Egypt (MDR-TETB/HIV, success rate)	
Table (3):	Differentiating Between Latent Infection and TB Disease	
Table (4):	Choosing the most effective LT treatment Regimen	
Table (5):	Routine sputum collection	141
Table (6):	Reading interpreting a positive Tuberculin Skin Test	
Table (7):	Demographics of the studied c	ases 147
Table (8):	Special habits of the studied cand history of BCG vaccination	
Table (9):	Demographics and special hab each group included in the stu	
Table (10):	Investigations of the studied ca	ases 149
Table (11):	General condition and investig of the studied cases	
Table (12):	Glycated hemoglobin in DM gr	oup 150
Table (13):	CD4 count in HIV group	151
Table (14):	Tuberculin skin test (TST) and Quantiferon (QNF-GIT) results studied cases	of the

List of Tables (Continued)

Table No.	Title	Page
Table (15):	Sensitivity of TST and QFT-GI detecting latent TB	
Table (16):	Frequency of latent TB accord	•
Table (17):	Concordance and discrepanci between TST and QFT-GIT	
Table (18):	Tuberculin skin test and Quantiferon results of the stucases	
Table (19):	Frequency of latent TB accord TST and QFT-GIT among the studied groups	three
Table (20):	Correlation between QFT-IT at HbA1c among diabetic group.	
Table (21):	Correlation between QFT-GIT CD4 count among HIV group.	
Table (22):	Relation between CD4 and QT before preventive treatment	
Table (23):	Relation between dose of corticosteroids and QFT-GIT	158
Table (24):	Relation between history of Bovaccination and QFT-GIT (quantitative)	alitative
Table (25):	QFT-GIT Follow up in latent T patients after preventive Treat	

List of Tables (Continued)

Table No.	Title	Page
Table (26):	Qualitative QFT-GIT befor	re and after
	preventive treatment	160

List of Figures

Figure No.	Title	Page
Fig. (1):	Algorithm for targeted diag treatment of LTBI in individuals risk groups	duals from
Fig. (2):	Two-step TST testing	81
Fig. (3):	Sensitivity of TST and QFT detecting latent TB infection	
Fig. (4):	Frequency of latent TB acc TST and QFT-GIT	_
Fig. (5):	Concordance and discrepations between TST and QFT-GIT.	
Fig. (6):	Relation between CD4 and before treatment	
Fig. (7):	QFT-GIT difference before a preventive treatment of cas latent TB	ses with
Fig. (8):	Qualitative QFT-GIT result and after preventive treatment patients with latent TB	nent of

Abstract

Background: In patients latently infected with Mycobacterium tuberculosis, immunosuppression increases the risk of progression to active tuberculosis (TB), which is still considered one of the difficult and frequent opportunistic infections worldwide. Better specificity in the diagnosis of latent tuberculosis infection (LTBI) is shown by Quantiferon-TB Gold In-Tube (QFT-GIT), and has been accepted in many national TB programs in low-endemic countries; QFT-GIT relies on detection of the immune reaction to specific M. tuberculosis antigens, which are not found in Bacillus Calmette–Guérin (BCG) or certain non-TB mycobacteria.

Aim: The aim of this study is to determine the role of the QFT-GIT assay in the detection and follow-up of treatment of latent tuberculosis (LTB) in some acquired immune-compromised patients.

Participants and methods: This prospective study was carried out on 50 immune-compromised patients attending the Abbassia Chest Hospital (either as inpatients or as outpatients). All patients were subjected to an assessment of history and clinical examination, radiological work-up, and laboratory investigations. All patients enrolled in the study were sputum negative for acid-fast Bacilli by Ziehl–Neelsen stain. Both the tuberculin skin test (TST) using the Mantoux technique and the QFT-GIT assay were performed simultaneously and their results were statistically compared, and then QFT-GIT was repeated after preventive treatment.

Results: The sensitivity of QFT-GIT was 20.8% and the sensitivity of TST was 12.5%. The frequency of LTB according to TST was only two (4.5%), that of the QFT-GIT test was only six (12.5%), and that of both QFT-GIT and TST was four (8.3%). Positive QFT-GIT was greater in patients receiving steroids, whereas indeterminate results were found only among HIV patients. Also, positive TST was greater among patients receiving steroids. There was a statistically significant difference between the CD4 count and the results of Quantiferon in HIV patients; indeterminate results were found in patients with CD4 less than 200 cells/mm³. There was a statistically significant reduction in quantitative QFT-GIT in LTB patients after preventive treatment.

Conclusion: The QFT-GIT assay seems to be more sensitive for the detection of LTBI in immune-compromised patients compared with the TST; however, QFT-GIT gave a considerable proportion of indeterminate results among HIV infected patients. Therefore, the simultaneous use of both TST and QFT-GIT could maximize the screening efficacy for LTBI in immune-compromised patients. The quantitative QFT-GIT assay can be used to monitor the effect of preventive treatment.

Keywords:

Immune-compromised, latent tuberculosis infection, Quantiferon-TB Gold-in-Tube