Cardiac Troponin T Level in Pediatric Patients with Respiratory Distress

Thesis
Submitted for Partial Fulfillment of Master Degree in Pediatrics

By Hania Naguib Mossad Diploma in Pediatrics 2014

Under supervision of

Prof. Dr. Laila Abdel Ghaffar Hegazy

Professor of Pediatrics Faculty of Medicine Ain Shams University

Dr. Sally Raafat Ishak

Lecturer of Pediatrics Faculty of Medicine Ain Shams University

Dr. Nancy Samir Wahba

Lecturer of Clinical Pathology Faculty of Medicine Ain Shams University

Faculty of Medicine, Ain Shams University 2019

Acknowledgment

First and foremost, I feel always indebted to **GOD**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Laila Abdel Ghaffar Hegazy**, Professor of Pediatrics - Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Sally Raafat Ishak, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Nancy Samir Wahba**, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Hania Naguib Mossad

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Respiratory Distress	5
Cardiac Troponin	39
Patients and Methods	51
Results	61
Discussion	74
References	88
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Pulmonary causes of respiratory distres	s6
Table (2):	Assessment and initial management	\mathbf{of}
	acute asthma	26
Table (3):	Causes of pneumonia by age group	28
Table (4):	Oral antibiotics in pneumonia	37
Table (5):	Intravenous and intramuscular antibio	otics
	in pneumonia	37
Table (6):	Grade of body temperature	53
Table (7):	Normal Heart Rate by Age (beats/minut	e)54
Table (8):	PRESS Scoring System	55
Table (9):	Descriptive statistics of gender for	the
	studied patients	
Table (10):	Descriptive statistics of all varia	
	measured for the studied patients	62
Table (11):	Descriptive statistics of cardiac troponi	
	level measured for the studied patients.	
Table (12):	Diagnosis of patients with Respirat	v
	distress	63
Table (13):	Signs and symptoms of Respirat	
	distress in the studied patients	
Table (14):	Oxygen supplementation and Grading	•
	respiratory distress in the studied patient	
Table (15):	Frequency distribution of patients'	
	investigations & Anthropome	
	measurements	
Table (16):	Comparison between cases (v	
	Respiratory distress) & controls (with	
	respiratory distress) as regard Pat	
	characteristics	66

List of Tables

Table No.	Title	Page	No.
Table (17):	Comparison between cases (with	
	Respiratory distress) & controls (with	\mathbf{hout}	
	respiratory distress) as regard Trope	onin	
	level		67
Table (18):	Correlation between Troponin level and	d all	
	studied variables in patients	with	
	Respiratory distress		68
Table (19):	Correlation between Troponin &	all	
	variables in pneumonia patients		69
Table (20):	Correlation between Troponin &	all	
	variables in bronciolitis patients		70
Table (21):	Correlation between Troponin &	all	
	variables in Bronchial asthma patients71		
Table (22):	Comparing Troponin T Levels according	ig to	
	patient diagnosis		73

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Signs of respiratory distress accord site of the disease distress	•
Figure (2):	The Pediatric Assessment Tri	
	(PAT)	11
Figure (3):	Algorithm management of croup	19
Figure (4):	Schematic representation of the campofibrillar thin filament	
Figure (5):	A model of the molecular arrangem troponin (Tn), tropomyosin (Tm),	ent of
	actin in the skeletal muscle thin fila:	
Figure (6):	Release of troponins in response cardiomyocytes injury	se to
Figure (7):	Necrosis of myocytes and asso-	ciated
	inflammatory infiltrate in myocardit	is48
Figure (8):	Comparison between cases	(with
	Respiratory distress) & controls (w	ithout
	respiratory distress) as regard Tro	ponin
	level	67
Figure (9):	Correlation between Troponin T leve	el and
3	PRESS score in patients with Respir	
	distress.	

List of Abbreviations

Abb. Full term AMIAcute myocardial infarction ARIsAcute respiratory infections BiPAPBilevel positive airway pressure BMI.....Body mass index CAPCommunity acquired pneumonia CHFCongestive heart failure CRP......C-reactive protein cTnICardiac troponin IcTnTCardiac troponin T ECGElectrocardiographic ELISA.....Enzyme-Linked Immunoassay FeNO.....Fractional exhaled nitric oxide HbHemoglobin, HFHeart failure HibHaemophilus influenzae type b ICSInhaled corticosteroid ICUIntensive Care Unit LABALong acting B2 agonist LRTIsLower respiratory tract infections MIMyocardial infarction *O2.....Oxygen* PAT.....The Pediatric Assessment Triangle PEEPPeak end expiratory pressure PICU.....Pediatric intensive care unit PMNPolymorphonuclear

PRESSPediatrics respiratory severity score

SARSSevere acute respiratory syndrome

RSV.....Respiratory syncytial virus SABAShort acting b2 agonist

WHOWorld Health Organization

TLCTotal leucocytic count

INTRODUCTION

cute respiratory infections (ARIs) are considered the leading cause of acute illness worldwide and remain the most important cause of infant and young children mortality (Liu et al., 2014).

Acute respiratory distress is one of the most common reasons for emergency visits in children under 5 years of age Usually, the underlying pathology is within the respiratory system, but can also be within other systems such as the cardiovascular or nervous systems (Sharma et al., 2015; Mehra and Gupta, 2018).

Respiratory distress is difficulty in breathing characterized by increase in rate and depth of breathing. It causes decreased feeding, cyanosis, grunting, nasal flaring, and intercostal retractions. The most common cause of respiratory distress is pneumonia followed by asthma, croup, and bronchiolitis (Lekshminarayanan et al., 2013).

Pneumonia is one of the most infectious causes of death in children worldwide. Pneumonia killed 920 136 children under the age of 5 in 2015, rating 16% of all deaths of children under five years old. Pneumonia affects children in the whole world, but is most widespread in South Asia and Africa. Children can be protected from pneumonia; it can be prevented

with simple interventions, and treated with low-cost medication and care (WHO, 2016).

Moreover lower respiratory tract infections (LRTIs) atypical including pneumonia, pneumonia, bronchitis, bronchiolitis, and severe acute respiratory sydrome (SARS), continue to threaten the health of children worldwide and especially in developing countries, where poor nutrition and access health care is scarce (Eboriadou et al., 2008).

Troponins are protein molecules that are part of cardiac and skeletal muscle. Three types of troponins exist—troponin I, troponin T, and troponin C. Each subunit has a unique function: Troponin I inhibits the interaction of myosin with actin, Troponin T binds the troponin components to tropomyosin, and Troponin C contains the binding sites for Ca+2 that helps initiate contraction (Rivara et al., 2012).

Cardiac troponin T can be used as a predictor to mortality in pediatric patients with heart failure, the median cTnT of subjects who died from heart failure was two fold higher than the value in those who survived (Sadoh and *Uduebor*, 2017).

Elevated cardiac troponin T (cTnT) is common in patients with acute respiratory distress, and is associated with worsened clinical outcomes (*Rivara et al.*, 2012).

Cardiac function in neonate could be influenced by the severity of respiratory distress and its ventilatory management (Correale et al., 2009).

The variations in cardiac troponin T concentration were significantly associated with oxygen requirement (Clark et al., *2004*).

AIM OF THE WORK

The aim of this study is to determine serum level of cardiac troponin T in children having respiratory distress and to correlate these levels with their clinical and laboratory data.

Working towards improving the morbidity and mortality in children with respiratory distress.

Chapter 1 **RESPIRATORY DISTRESS**

Definition:

Respiratory distress is effortful respiration due to hunger for air. When respiratory effort is inadequate to sustain the effective gas exchange (oxygenation and removal of CO2), respiratory failure occurs. Respiratory failure is the end stage of respiratory distress (*Johann et al.*, 2016).

Effortful respiration is inspected by:

- Working ala nasi
- Stridor
- Difficulty in breathing or fast breathing
- Wheezing
- Grunting
- Contraction of the scalene muscle
- Contraction of the sternomastoid muscle
- Retraction of the supraclavicular fossa
- Retraction of the suprasternal fossa
- Retraction of the lower ribs during inspiration
- Thoraco-abdominal asynchrony
- Contraction of abdominal muscles
- Cyanosis in severe cases

(Tulaimat and Trick, 2017; Sharma et al., 2015)

It is one of the most common reasons for pediatric emergency department visits and hospitalizations. Many conditions may cause respiratory distress in children. Usually, the underlying pathology is within the respiratory system, but can also be within other systems such as the cardiovascular or nervous systems (*Mehra and Gupta*, 2018).

Causes of respiratory distress:

1- Pulmonary causes:

Table (1): Pulmonary causes of respiratory distress (Mehra and Gupta, 2018; Mandal et al., 2015; Ida and Thompson, 2014).

Upper airway	Lower airway disease	Lung parenchymal
Angioneurotic Edema Choanal atresia Enlarged tonsils or peritonsillar abscess, adenoids Inflamed sinuses Croup Foreign body Epiglottitis laryngeomalacia or laryngeal web Nasal obstruction Retropharyngeal cellulitis or abscess Subglottic stenosis (prolonged intubation)	Bronchiolitis Asthma Foreign Body Para-tracheal lymph node enlargement	Pneumonia ARDS(acute respiratory distress syndrome) Pulmonary edema Pleural effusion Pneumothorax

2- Extrapulmonary causes (Berliner et al., 2017):

Cardiovascular causes:

Congenital heart diseases

Acute decompensated heart failure

Cardiac arrhythmias

Myocardial infarction

Cardiac tamponade

- Neurological and muscle diseases: e.g.: diaphragmatic paralysis
- Heamatological diseases: e.g.: anemia
- Metabolic and endocrinal diseases: e.g.: diabetic ketoacidosis
- Gastrointestinal conditions: e.g.: gastroenteritis causing severe dehydration.
- Allergic reactions

Symptoms of respiratory distress according to the age:

Neonates are commonly presented with poor feeding and irritability, as well as tachypnea, retractions, working ala nasi, grunting, and cyanosis (*Hardy and Naga*, 2015).

Infant older than one month, grunting is less common; however, tachypnea, retractions, and cyanosis are common and may be accompanied by a persistent cough, irritability and refusing feeding (*Hardy and Naga*, 2015).

Toddlers and preschoolers most often present with tachypnea. They may have vomiting, headache, sweating, chest pain (pleuritic), vague abdominal pain and confusion (*Cruz and Wunderlink*, 2017).

Assessment of a child with respiratory distress:

Gerneral examination:

- Fever
- Cyanosis
- Changes in alertness
- Tachycardia
- Nasal flaring

Chest examination:

- Tachypnea
- Stridor
- Wheezing
- Use of accessory muscles

Pulse oximeter:

• Low oxygen saturation

(De-Barsi et al., 2010; Sharma et al., 2015)