

Potential modulatory effect of cranberry powder extract in experimental model of fatty liver in rats

Submitted for the fulfillment of Master Degree in Pharmaceutical Sciences
(Pharmacology and Toxicology)

Thesis presented by

Safaa Ahmed Faheem Shabaan

Bachelor of Pharmaceutical sciences, Egyptian Russian University (2012)

Demonstrator of Pharmacology and Toxicology,

Faculty of Pharmacy, Egyptian Russian University

Under the Supervision of:

Dr. Samar Saad Eldeen Azab

Assistant professor in Pharmacology & Toxicology Department,
Faculty of Pharmacy,
Ain Shams University

Dr. Reem Nabil Abou El-Naga

Assistant professor in Pharmacology and Toxicology Department,

Faculty of Pharmacy,

Ain Shams University

Dr. Noha Mohammed Saeed Abdel-Azeem

Lecturer in Pharmacology and Toxicology Department,

Faculty of Pharmacy,

Egyptian Russian University

Faculty of Pharmacy
Ain Shams University
2019

Potential modulatory effect of cranberry powder extract in experimental model of fatty liver in rats

A thesis submitted for partial fulfillment of Master Degree in Pharmaceutical Sciences

(Pharmacology and Toxicology)

By

Safaa Ahmed Faheem Shabaan

Bachelor of Pharmaceutical sciences, Egyptian Russian University (2012)

Demonstrator of Pharmacology and Toxicology,

Faculty of Pharmacy, Egyptian Russian University

Under the Supervision of:

Assistant Prof. Samar Saad Eldeen Azab

Assistant prof in Pharmacology &Toxicology Department

Faculty of Pharmacy

Ain Shams University

Assistant Prof. Reem Nabil Abou El-Naga

Assistant prof in Pharmacology and Toxicology Department

Faculty of Pharmacy

Ain Shams University

Dr. Noha Mohammed Saeed Abdel-Azeem

Lecturer in Pharmacology and Toxicology Department
Faculty of Pharmacy
Egyptian Russian University

Faculty of Pharmacy
Ain Shams University
2019

بسم الله الرحمن الرحيم

وو وَقُلْ رَبِّ زِدْنِي عِلْمًا وو

حدق الله العظيم

سورة طه (الأية ١١٤)

Acknowledgment

In the name of Allah, The Most Gracious and The Most Merciful Peace and blessings be upon our Prophet Mohammad and his good followers till the Day of Judgment.

I owe a special word of thanks to Assist.Prof. *Samar Saad Eldeen Azab*, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her advice, supervision, and crucial contribution, which made her a backbone of this research and so to this thesis.

I owe a special word of thanks to Dr. Reem Nabil Abouelnaga, Assist.Prof. of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her efforts, guidance from the very early stage of this research and valuable suggestions during the practical part. It would not have been possible to write this thesis without her help.

I would like to explicit my sincere thanks and gratitude to my supervisor, *Dr. Noha Mohammed Saeed Abdel-Azeem*, *Lecturer* of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University for being so generous with her knowledge and being so supportive in all aspects. I am so grateful to her for her sincere efforts and guidance through the entire work. She is exemplary in her role as a mentor, a researcher and a teacher in the laboratory and in life.

I am thankful to Prof. Dr. Adel Bakeer Kholoussy, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, and his highly respected laboratory team for their invaluable contribution in histopathological examination part of this work.

I am indebted to my professors in the Pharmacology department: Prof. Dr. Laila Abdelaziz and Dr. Hanaa Abdel-Rahman and my colleagues: Dr.Ahmed Atwa, Hassan Afify, Mariem Hany, Mohamed Ezzat, Aya Mostafa, Amr Elgiz, Eslam Hassan, Manar Ismaiel, Manar Abdelsalam, Ahmed Nasr, Abdelaziz Saeed, Ali Elgendy and Mostafa Fayed for their help and support throughout my post-graduate study.

I would like to express my deep thanks to Prof. Dr. **Ihab Fetouh**, Dean of the Faculty of Pharmacy, Egyptian-Russian University, for his valuable advice, support and encouragement.

My special thanks and blessings are heartily paid to my family members, especially my beloved husband, my kids, brothers and sister for supporting and encouraging me to pursue this degree.

Finally I would like to give everlasting thanks to my mother and father, for supporting and encouraging me to pursue this degree. Without their encouragement, I would not have finished the degree.

Safaa Ahmed

Contents	page
List of abbreviattions	I <i>V</i>
List of tables	.VIII
List of figures	.IX
Abstract	.1
Review of literature	.3
1. Non alcoholic fatty liver disease	.3
1.1 NAFLD etiology and prevalence	5
1.2 Diagnosis of non -alcoholic fatty liver disease	6
1.3 NAFLD Pathogenesis	7
1.3.1 Peripheral lipolysis	7
1.3.2 Inflammation	8
1.3.3 Hepatic steatosis	15
1.3.4 Insulin resistance	.16
1.3.5 Oxidative stress	20
1.3.6 Fibrosis	.22
1.4 Therapeutic approaches for NAFLD	.23
1.4.1 Non pharmacological therapy	
1.4.2 Pharmacological approaches	
2. Cranberry powder extract	
2.1 Background	
2.2 Composition and chemistry	31
2.3 Pharmacodynamics	.33
2.4 Pharmacokinetics	.35
2.5 Drug interactions	37
2.6 Safety	
Aim of the work	1 1
Materials and methods4	4
1. Design of the work4	4
2. Materials	17
2.1 Drugs	17

2.2 Animals47
2.3 Chemicals48
2.4 Buffers50
2.5 Readymade Kits51
2.6 Antibodies60
3. Methods61
3.1 Assessment_of hepatotoxicity indices61
3.1.1 Assessment of serum alanine aminotransferase61
3.1.2. Assessment of serum aspartate aminotransferase6.
3.1.3. Assessment of serum triglycerides65
3.2 Assessment of Oxidative stress markers67
3.2.1 Determination of serum levels of thiobarbituric acid
reactive substances indicative to malondialdehyde content6
3.2.2. Assessment of serum levels of Superoxide dismutase
activity71
3.2.3. Assessment of liver content of reduced Glutathione74
3.2.4. Assessment of liver content of Catalase activity77
3.3 Assessment of inflammatory markers using enzyme linked
immunosorbent assay81
3.3.1. Assessment of Interleukin-681
3.3.2. Assessment of Tumor Necrosis Factor-alpha84
3.3.3. Assessment of liver nuclear factor- kappa B content89
3.4 Assessment of liver Adiponectin content
3.5 Assessment of protein in tissue homogenate96 3.6 Assessment of serum insulin level
3.7 Western blotting assessment of Nrf-2 and IRS-β10
3.8 Assessment of liver fibrosis markers
3.8.1 Detection of α-SMA and TGF-β by
immunohistochemisrty technique
3.8.2. Determination of hydroxyproline content in liver
tissue104
3.9 Histopathological examination106
3.10 Statistical analysis107
Results

List of contents

Discussion	149
Summery and conclusion	158
References	163
Arabic summery	١

List of abbreviations

ACC	acetyl-CoA carboxylase
ADP	Adiponectin
ALT	Alanine transaminase
AMP-kinase	adenosine mono phosphate–kinase
AP-1	activator protein-1
apo B	apolipoprotein B
AST	aspartate aminotransferase
CAT	Catalase
ChREBP	carbohydrate-responsive element-binding protein
Chylo	Chylomicron
CV	central vein
СҮР	cytochrome P450
DAG	Diacylglycerols
DNL	denovo-lipogenesis
ERK	extracellular receptor kinase
FA	fatty acid
FAS	fatty acid synthase
FFAs	free fatty acids
FXR	farnesoid X receptor
G6PC	glucose 6-phosphatase

GCKR	glucokinase regulatory protein
GLUT-4	insulin-dependent glucose transporter
GSH	Glutathione
GSH-Px	glutathione peroxidase
HSCs	hepatic stellate cells
IL	Interleukin
IL-6	interleukin-6
INR	international normalized ratio
InsulinR	Insulin receptor
IR	Insulin resistance
IRS	Insulin receptor substrate
ΙκΚ	inhibitor kappa B kinase
IĸKb	inhibitor of kappa B kinase b
JNK	C-Jun-N-terminal kinase
LPL	lipoprotein lipase
LXR	liver X receptor
MAPK	mitogen-activated protein kinase
MetS	metabolic syndrome
MRP	multidrug resistance protein
MTP	microsomal triglyceride transfer protein
MUFA	monosaturated fatty acids

NAFLD	Non-alcoholic fatty liver disease
NASH	Non-alcoholic steatohepatitis
NF-κB	nuclear factor-kappa B
Nrf-2	Nuclear factor erythroid-2-related factor-2
ODC	ornithine decarboxylase
PACs	Proanthocyanidins
PI3K	phosphatidylinositol 3-kinase
PKCε	protein kinase ε
PPAR	peroxisome proliferator activated receptor
PT	portal triad
PUFAs	polyunsaturated fatty acids
QR	quinone reductase
RIP	Receptor interacting protein
ROS	reactive oxygen species
SCD1	steroyl CoA desaturase 1
SFA	saturated fatty acids
SGLT-1	intestinal sodium/glucose cotransporter
SOCS	Suppressor-of-cytokine-signaling
SOD	Super oxide dismutase
SREBP-1C	sterol regulatory element binding protein-1c
STAT	Signal transducer and activator of transcription

List of abbreviations

TCA	tricarboxylic acid
TG	Triglycerides
TGF-β	transforming growth factor-β
TNF-α	tumor necrosis factor-α
TRADD	TNF receptor-1 associated death domain protein
TRAF2	TNF receptor-associated factor 2
TZDs	Thiazolidinedione's
UA	ursolic acid
Ub	Ubiquitin mediated
VAT	visceral adipose tissue
VLDL	Very low density lipoprotein
α-SMA	α-smooth muscle actin

List of Tables

Table No.	Title	Page
1	The structures of the major active constituent of CE	32
2	Effect of co-treatment with CE50 and/or CE100 on body weight, liver index and serum activities of liver enzymes in rats fed HFCD	110
3	Effect of co-treatment with CE50 and/or CE100 on serum level of TG in rats fed HFCD	116
4	Effect of co-treatment with CE50 and/or CE100 on HOMA-IR in rats feeding HFCD	121
5	Effect of co-treatment with CE50 and/or CE100 on liver oxidative stress markers and antioxidant enzymes in rats fed HFCD	125
6	Effect of co-treatment with CE50 and/or CE100 on serum level of IL- , TNF-α and liver content of NF- κβ in rats fed HFCD	131
7	Effect of co-treatment with CE50 and/or CE100 on ADP level and Nrf-2 expression in rats fed HFCD	136
8	Effect of co-treatment with CE50 and/or CE100 on IRS-β expression in rats fed HFCD	140
9	Effect of co-treatment with CE50 and/or CE100 on ββ, α-SMA and collagen in rats fed HFCD	144

List of figures

Figure	Title	Page
no.		
1	The disease spectrum of nonalcoholic fatty liver disease	4
2	Role of white adipose tissue and liver in the development of MetS and NAFLD	8
3	The balance/imbalance of pro- and anti-inflammatory cytokines secreted by adipose may profoundly affect the liver	9
4	Regulation of insulin resistance and involved pathways. Several inflammatory pathways involved in the regulation of IR have been identified	11
5	Transcriptional control of lipogenesis and glycolysis	13
6	Metabolism of TG in the liver	16
7	Development of nonalcoholic hepatic steatosis	18
8	Standard calibration curve for MDA	70
9	Standard calibration curve for SOD	73
10	Standard calibration curve for GSH	76
11	Standard calibration curve for Catalase	80
12	Standard calibration curve for IL-6	84
13	Standard calibration curve for TNF-a	88
14	Standard calibration curve for α	91
15	Standard calibration curve for ADP	95
16	Standard calibration curve for protein	97

Figure no.	Title	Page
17	Standard calibration curve for Insulin	99
18	Standard calibration curve for Hydroxyproline	105
19	Effect of co-treatment with CE50 and/or CE100 on body weight in rats fed HFCD	111
20	Effect of co-treatment with CE50 and/or CE100 on liver index in rats fed HFCD	112
21	Effect of co-treatment with CE50 and/or CE100 on ALT in rats fed HFCD	113
22	Effect of co-treatment with CE50 and/or CE100 on AST in rats fed HFCD	114
23	Effect of co-treatment with CE50 and/or CE100 on TG in rats fed HFCD	117
24	Photomicrographs of liver sections taken from the different treatment groups stained by haematoxylin and eosin	119
25	Effect of co-treatment with CE50 and/or CE100 on HOMA- IR in rats fed HFCD	122
26	Effect of co-treatment with CE50 and/or CE100 on GSH in rats fed HFCD	126
27	Effect of co-treatment with CE50 and/or CE100 on SOD in rats fed HFCD	127
28	Effect of co-treatment with CE50 and/or CE100 on CAT in rats fed HFCD	128
29	Effect of co-treatment with CE50 and/or CE100 on MDA in rats fed HFCD	129