

كلية العلوم - قسم الكيمياء

Synthesis of Silver Nanoparticle Using Some Cationic Surfactant and Their Applications

Thesis

Submitted By

Nariman Mohamed Hussien Ahmed El-wakeel

(Egyptian Petroleum Research Institute(EPRI))

(B.Sc. Chemistry-Biochemistry)
1998

Submitted for Partial Fulfillment of M.Sc. Degree of Science in Chemistry Supervisors

Prof. Dr. Mostafa Mohammad .H. Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ismail Abd EL- Rahman Aiad

Professor and head of Petrochemicals Department, Egyptian Petroleum Research Institute

Ass. Prof. Salah M. Tawfik

Ass. Prof. of Applied Organic Chemistry, Egyptian Petroleum Research Institute – EPRI

(2019)

كلية العله م-قسم كيمياء

Approval Sheet

Name of candidate: Nariman Mohamed Hussien Ahmed Elwakeel

Degree: M.Sc. Degree in Chemistry

Thesis Title: "Synthesis of Silver Nanoparticle Using some Cationic Surfactant

and Their Applications"

This Thesis has been approved by:

signature

1- Prof. Dr. Mostafa Mohammad .H. Khalil

Prof. of Inorganic Chemistry, Faculty of Science, Ain Shams University

2- Prof. Dr. Ismail Abd El Rahman Aiad

Professor and head of Petrochemicals Department, Egyptian Petroleum Research Institute

3- Ass. Prof. Salah M. Tawfik

Ass. Prof. of Applied Organic Chemistry, Egyptian Petroleum Research Institute – EPRI

Approval

Head of chemistry Department.

Acknowledgement

At the beginning, praise is to Almighty Allah, the lord of the world, whose guidance, blessings and help enabled me to take my first step on the path of improving my knowledge through this humble effort.

Very special thanks to **Prof. Dr. Mostafa Khalil**, Professor of Inorganic Chemistry, faculty of science, Ain Shams University, for his continuous encouragement, valuable advices, continuous cooperation, support, and valuable criticism during the achievement of the research work.

I wish to express my deep thanks, ultimate appreciation and respect for **Prof.Dr. Ismail Abd El Rahman Aiad**, Professor of Applied Chemistry, Petrochemical Department, Egyptian Petroleum Research Institute "EPRI", not only for suggesting the subject investigated, but also for suggesting the research problem, guidance, advice and valuable help throughout this work. Their constructive criticism and comments from the initial conception to the end of this work are highly appreciated and the motivation that I need to succeed in the future.

I wish also to express my appreciation to **Ass. Prof. Salah Mahmoud Tawfik,** Ass. Prof. of Applied Organic chemistry, Egyptian Petroleum Research Institute "EPRI", for his kind advices, valuable help, guidance and encouragement at all stages of my work.

Special thanks for my dear friends and colleagues at chemistry department and all members of EPRI Staff who helped me to make this work.

I would really like to express my deepest gratitude and appreciation to my parents for their invaluable help, continual encouragement and moral supports. I wish also to say to my parents: "There are no words to match my gratitude".

Finally, but most important, I thank Allah Almighty again on all things in my life.

Nariman Mohamed Hussien Elwakeel

2019

" تثبيت جزيئات الفضه النانوية باستخدام المواد ذات النشاط السطحي الكاتيونية المحضرة وتطبيقاتها"

رساله مقدمه للحصول علي درجه الماجستير في العلوم كجزء مكمل لمتطلبات رساله الماجستير بكليه العلوم (قسم الكيمياء)

من

ناریمان محمد حسین احمد الوکیل بکالوریوس علوم-(کیمیاء-کیمیاء حیویه)-جامعه عین شمس تحت اشراف

ا.د/ مصطفى محمد حسن خليل أستاذ الكيمياء غير عضوية كلية العلوم جامعه عين شمس ا.د / اسماعيل عبد الرحمن عياد أستاذ الكيمياء التطبيقية- رئيس قسم البتر وكيماويات — معهد بحوث البتر ول

د /صلاح محمود توفيق أستاذ باحث مساعد - الكيمياء التطبيقيه العضويه قسم البترو كيماويات معهد بحوث البترول

الى كلية العلوم – قسم الكيمياء – جامعة عين شمس ٢٠١٩

Y.19/ /

كلية العلوم-قسم كيمياء

7.19 /

رسالة ماجيستير

اسم الطالبة: ناريمان محمد حسين احمد الوكيل عنوان الرسالة: " تثبيت جزيئات الفضة النانوية باستخدام المواد ذات النشاط السطحي الكاتيونية المحضرة وتطبيقاتها" اسم الدرجة: ماجيستير في علوم الكيمياء لجنة الأشراف التوقيع التخصص الاسم اد/ مصطفى محمد حسن خليل أستاذ الكيمياء غير عضويه كلية العلوم جامعه عين شمس اد / اسماعيل عبد الرحمن عياد أستاذ الكيمياء التطبيقية- رئيس قسم البتروكيماويات - معهد بحوث البترول أستاذ باحث مساعد الكيمياء العضويه التطبيقيه-د /صلاح محمود توفیق قسم البترو كيماويات معهد بحوث البترول لجنة التحكيم الاسم التخصص ا.د/ مصطفى محمد حسن خليل أستاذ الكيمياء غير عضوية كلية العلوم جامعه عين شمس اد /اسماعيل عبدالرحمن عياد أستاذ الكيمياء التطبيقية - رئيس قسم البتروكيماويات – معهد بحوث البترول اد/ محمد مختار محمد عبدالله أستاذ كيمياء-وكيل كليه العلوم لشؤون الطلاب-جامعه بنها اد / أحمد محمود الاقرع أستاذ كيمياء -كليه العلوم -جامعه القاهره الدارسات العليا Y . 19 / تاريخ مواففة مجلس القسم: / اجيز الرسالة بتاريخ: ختم الأجازة 4.19/ موافقة مجلس الجامعة موافقة مجلس الكلية

عنوان الرسالة: " تثبيت جزيئات الفضة النانوية باستخدام المواد ذات النشاط السطحي الكاتيونية المحضرة وتطبيقاتها "

اسم الطالبة: ناريمان محمد حسين احمد الوكيل

اسم الدرجة: ماجيستير في علوم الكيمياء

القسم التابع له: الكيمياء .

سنة المنح / ٢٠١٩

شكر وتقدير

أتقدم بالشكر والعرفان لأساتذتى الأفاضل الذين قاموا بالإشراف على هذا العمل وهم:

أستاذ الكيمياء غير عضوية كلية العلوم جامعه عين شمس

ا.د/ مصطفی محمد حسن خلیل

أستاذ الكيمياء التطبيقية- رئيس قسم البتروكيماويات – معهد بحوث البترول

ا.د / اسماعيل عبد الرحمن عياد

استاذ باحث مساعد الكيمياء العضويه التطبيقيه-قسم البترو كيماويات- معهد بحوث البترول

د /صلاح محمود توفیق

Contents

Topics
List of Abbreviations
List of tables
List of figures
Aim of the work
Abstract
Chapter 1. Introduction
1. Surfactants
1.2.Classification of surfactants
1.2.1.Anionic surfactants
i. Carboxylates
ii. Sulphates
iii.Sulphonates
iv.Phosphates.
1.2.2.Cationic surfactants
1.2.3.Nonionic surfactants
1.2.4.Zwitterionic Surfactants
1.3.Adsorption of surfactants
1.3.1.Mechanism of adsorption
1.3.2. Factor influencing the adsorption at the interfaces
i. Internal factors
1. Molecular orientation
2. Molecular structure (Head groups)
ii. External factors.
1. Effect of pH
2. Ionic strength
3. Temperature
1.4.Critical micelle concentration (CMC)

1.5.Application of surfa	ctants		
2. Nanoparticles			
2.1.Silver Nanoparticles	5		
2.2.Common Application	ons of Silver Nanoparticles		
2.3.Bactericidal Effects	of Nano-Silver		
3. Biocides			
3.1.Mechanism action of	of biocides		
Chapter 2. Literat	ture Review	•••••	•••••
1. Surfactants			
	ls and Methodologies		
1. Chemicals			
2. Characterizat	ion		
2.2. ¹ HNMR spectroscop	py		
2.3.UV-vis spectroscop	y		
2.4. Transmission Elect	ron Microscope (TEM)		
2.5.Dynamic light scatte	ering (DLS)		
3. Synthesis			
3.1.Synthesis of fatty	acid ester of N-methyl diethar	nol amine	
3.2. Synthesis of catio	onic surfactants		
4. Surface Tension Mea	nsurements (γ)		
5. Biological Activity			
Chapter 4. Results	and discussion	•••••	••••
Characterization of the surfactants	he synthesized cationic		
1.1. Infrared	spectroscopic	analyses	(FT-IR)

1.2.	¹ H-NMR	spectrosco	-	analyses		(FT-IR)	53
		the cationic surface		d on the Agl	NPs scope		63
•	Ultraviolet				Spec	ctroscopy	65
	(UV)						
2.2.	Transmission	electron microscop	e (TEM) and	selected area	a electron d	iffraction	65
	(SAED)						
2.3.	Dynamic light (DLS)	scattering					66
2.4.	FTIR spectroscopy						67
3. Surfa	ace activity of t	he cationic surfacta	ants				73
3.1.	Critical Micell	le Concentration (C	CMC)				74
3.2.	The effectiven	ess (π _{cmc})					75
3.3.	The efficiency	,					76
	,						77
3.4.	The maximum	n surface excess (I	max) and minin	num surface	area (A_{min})		
4. Mic	ellization and a	dsorption Thermoo	lynamics				85
	•	of the Synthesized	Cationic Surfa	actants and t	heir		89
5.1.The	ostructures Structu	ire and	Function	of	the	Cell	00
Mei	mbrane						89
5.2.Act	ion Mode of the	e Synthesized Catio	onic Compoun	ds as antimi	crobial Age	ent	94
	imicrobial-Che factants.	mical Structure	Relationships	of the sy	ynthesized	Cationic	96
=		the synthesized car		_		_	101
6.1.Pro	blems caused by	y oil and gas field	oacteria				101
Summ	ary and con	clusion					105
Refere	ences						108
Arabi	c summary						

List of Abbreviations

Symbol	Abbreviation	unit
С	Molar concentration	ML ⁻¹
γ	Surface tension	mNm ⁻¹
п	Effectiveness	mNm ⁻¹
Pc ₂₀	Efficiency	ML ⁻¹
CMC	Critical micelle concentration	mML ⁻¹
π_{cmc}	The effectiveness	mNm ⁻¹
- γ ₀	surface tension of bi-distilled water	mNm ⁻¹
У стс	surface tension of aqueous surfactant solution at critical micelle concentration	mNm ⁻¹
Pc20	The efficiency	mNm ⁻¹
Γ_{max}	maximum surface excess	mol.cm ⁻²
A _{min}	minimum surface area	A² molecule ⁻¹
ΔG	free energy	kJ/mol
ΔS	Entropy	kJ.mol ⁻¹ K ⁻¹
ΔΗ	Enthalpy	Kcal.

List of tables

No.	Title	Page
1	Chemicals used and their sources and grades	48
2	Surface parameters of cationic surfactants at 20, 40 and 60 °C	84
3	Thermodynamic parameters of prepared cationic surfactants at 20, 40 and 60 °C	88
4	Antimicrobial activity of the prepared cationic surfactants against pathogenic bacteria and fungi	98
5	Antimicrobial activity of the synthesized cationic surfactants capped silver nanoparticles against pathogenic bacteria and fungi	99
6	Biological activity of synthesized surfactant against SRB	104

List of Figures

No.	Title	Page
1.1	Schematic illustration of the various types of surfactants	1
1.2	Arrangement of surfactant molecules to form micelles	9
1.3	Structures of surfactant micelles at concentration over CM	10
1.4	Schematic of gram-negative bacterial cell wall	19
1.5	Internal structure of (a) healthy E. coils cell and (b) silver-treated E. coli cell	20
4.1	FTIR spectrum of (MDABC) surfactant.	57
4.2	FTIR spectrum of (MDABL) surfactant.	58
4.3	FTIR spectrum of (MDABM) surfactant	59
4.4	FTIR spectrum of (MDABP) surfactant.	60
4.5	¹ H-NMR spectrum of (MDABC) surfactant.	61
4.6	¹ H-NMR spectrum of (MDABL) surfactant.	62
4.7	¹ H-NMR spectrum of (MDABM) surfactant	63
4.8	¹ H-NMR spectrum of (MDABP) surfactant.	64
4.9	UV Spectra of the nanostructure of the synthesized cationic surfactants with silver nanoparticles	68
4.10	TEM images of prepared silver nanoparticle assembled with different synthesized cationic surfactants	69
4.11	SAED images of prepared silver nanoparticle with different synthesized cationic surfactants.	70
4.12	Size distribution of prepared silver nanoparticle assembled with synthesized cationic surfactants	71

4.13	FTIR spectrum of MDABL surfactant assembled with AgNPs	72
4.14	Surface tension-concentration profile of compound (MDABC) at 20, 40 and 60 $^{\circ}\text{C}$	79
4.15	Surface tension-concentration profile of compound (MDABL) at 20, 40 and 60 $^{\circ}\text{C}$	80
4.16	Surface tension-concentration profile of compound (MDABM) at 20, 40 and 60 $^{\circ}\text{C}$	81
4.17	Surface tension-concentration profile of compound (MDABP) at 20, 40 and 60 $^{\circ}\text{C}$	82
4.18	Temperatures & hydrophobic chain length effect of synthesized cationic surfactant on	
	critical micelle concentration values	83
4.19	Chemical structure of the steroids	91
4.20	Distribution of steroids in the cell membrane	91
4.21	Teichoic acid derivatives in the cell membrane	91
4.22	The structure of the peptidoglycan in the different bacterial genera	94
4.23	Structure of the bacterial cell walls	95
4.24	Schematic representation of possible mechanism of antimicrobial activity of the	
	synthesized cationic surfactants	100

Aim of the work

The aim of the work includes:

- 1. Synthesis of fatty mono ester of methyl diethanol amine via reaction of molar ratio amount 1:1 from the methyl diethanol amine and corresponding fatty acid (decanoic, dodecanoic, tetradecanoic and hexadecanoic acid) in xylene and p-tolune sulphonic acid (catalyst).
- 2. Synthesis of cationic surfactants via quaternization of the obtained fatty ester (step 1) with benzyl chloride in absolute ethyl alcohol.
- 3. Confirmation the chemical structures of the synthesized cationic surfactants using: FTIR and ¹HNMR.
- 4. Preparation of colloidal silver nanoparticles.
- 5. Preparation of silver nanoparticles stabilized by prepared cationic surfactant.
- 6. Investigation of the self-assembling of the synthesized surfactants onto the prepared silver nanoparticles using the following techniques
 - a- Ultraviolet absorption spectroscopy (UV)
 - b- Transmission electron microscope (TEM)
 - c- Dynamic light scattering (DLS)
- 7. Determination the surface activity of the synthesized cationic surfactants via surface tension measurements at different temperatures (20, 40 and 60 °C)
- 8. Determination the surface parameters of the synthesized cationic surfactants including: critical micelle concentration (CMC), effectiveness (Π_{cmc}), efficiency (PC_{20}), maximum surface (Γ_{max}) and minimum surface area