Effectiveness and Outcome of Methylprednisolone versus Hydrocortisone in Treatment of Acute Respiratory Distress Syndrome (ARDS)

THESIS

For Partial Fulfilment of Master Degree in General Intensive Care.

Dr. Saleh Ali Saleh Elbrassi

M.B. B.Ch

Faculty of Medicine - Libya international medical university (LIMU)

Under Supervision of

Prof. Dr. Khaled Mohamed Maghawry

Professor of anesthesiology, intensive care and pain management Faculty of Medicine-Ain shams University

Dr. Rania Magdy Mohammed Ali

Assistant professor of anesthesiology, intensive care and pain management
Faculty of Medicine-Ain shams University

Dr. Rania Hassan abdel Hafiez

Lecturer of anesthesiology, intensive care and pain management Faculty of Medicine-Ain shams University

> Faculty of Medicine Ain shams University 2019

بِنِيْ أَسْلَالِحَوْ الْحِيْنِ فِي

وقُل اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلُكُمْ وَلَيْ عَمَلُكُمْ وَلَيْ وَالْمُؤْمِنُونَ وَرَسُولُهُ وَالْمُؤْمِنُونَ

صدق الله العظيم سورة التوبة آية (١٠٥)

Acknowledgment

First and foremost, all praise to God, who has graced me with everything I've ever asked for and more.

I find it difficult to express —in one page—my gratitude and sincere feelings to my supervisors and all those who offered me help and advice during laying down the manuscript of this thesis. Your contribution will always be remembered.

I would like to express my deepest respect to **Prof. Dr. Khaled Mohamed Maghawry**, Professor of anesthesiology, intensive care and pain management, Faculty of Medicine-Ain shams University for his continuous advice, support and guidance.

I would also like to express my deep gratitude to **Dr. Rania Magdy Mohammed Ali,** Assistant professor of anesthesiology, intensive care and pain management, Faculty of Medicine-Ain shams University for her encouragement, sincere quidance, and patience during accomplishment of this work.

I would also like to express my deep gratitude to **Dr. Rania Hassan Abdel Hafiez,** Lecturer of anesthesiology, intensive care and pain management, Faculty of Medicine-Ain shams University for her encouragement, sincere guidance, and patience during accomplishment of this work.

Finally and mostly, special thanks to my parents, family and fellow colleagues for their endless support, patience, and forbearance during my work.

List of Content

Acknowledgement	
List of Abbreviations	i
List of Table	ii
List of Figure	iii
Introduction	1
Aim of Work	3
Review of Literature	4
Chatper1: Acute Respiratory Distress Syndrome	4
Chatper2: Diagnosis and Differential Diagnosis of Acute Respiratory Distress Syndrome	
Chatper3: Treatment of acute Respiratory Distributions Syndrome	
Patients and Methods	75
Results	84
Discussion	105
Conclusion and Recommendations	114
Summary	115
References	117
Arabic Summary	

List of Abbreviations

AECC : American-European Consensus Conference.

ALI : Acute lung injury.

Ang-1 : Angiopoietin-1.

Ang-2 : Angiopoietin-2.

ARDS : Acute respiratory distress syndrome.

AT1 : Alveolar type 1.

CPAP : Continuous positive airway pressure.

CVP : Central venous pressure.

ECMO : Extracorporeal membrane oxygenation.

ELSO : Extracorporeal life support organization

FACT : Fluid and Catheter Treatment.

FDG : 2-fluoro-2-deoxy-D-glucose.

FV : Femoral vein.

GDF-15 : Growth differentiation factor-15.

HR : Heart rate.

IL-1β : Interleukin 1beta.

IVC : Inferior vena cava.

KGF : Keratinocyte growth factor.

LIS : Lung Injury Score.

LTVV : Low tidal volume ventilation.

MAP : Mean arterial pressure.

MOF : Multiple organ failure.

NETs : Neutrophil extracellular traps.

nmMLCK : Non-muscle myosin light chain kinase.

PAMPs : Pathogen-associated molecular patterns.

PEEP : Positive end expiratory pressure.

PHV : Permissive hypercapnic ventilation.

PMN : Polymorphonuclear neutrophils.

PRRs : Pattern recognition receptors.

RA : Right atrium.

RIJV : Right internal jugular vein.

S1P : Sphingosine-1 phosphate.

SD : Standard deviation.

sICAM-1 : Soluble intercellular adhesion molecule.

SOFA : Sequential Organ Failure Assessment.

SPO₂ : Oxygen saturation.

SVC : Superior vena cava.

TNFα : Tumor necrosis factor alpha.

VA ECMO: Veno-arterial ECMO.

VE-cadherin: Vascular endothelial cadherin.

VEGF : Vascular endothelial growth factor.

VV ECMO: Veno-venous ECMO.

List of Tables

Table	Title	Page
1	Predisposing condition of ARDS	7
2	Biomarkers of acute respiratory	21
3	Berlin definition of ARDS	23
4	Common risk factors for ARDS	24
5	Signs and Symptoms That Suggest Specific	25
	Causes of Acute Respiratory Distress	
	Syndrome	
6	Factors That Distinguish ARDS, CHF, and	40
	Pneumonia	
7	Differential diagnosis of ARDS (acute	42
	hypoxia)	
8	Protocol for lung protective ventilation	45
9	Eligibility criteria for starting a spontaneous	53
	breathing trial and parameters for weaning	
	the patient from the ventilator	
10	Protocol for fluid management in patient	54
	with ARDS	
11	Trials of corticosteroids for treatment of	63
	ARDS	
12	Summarized the indications and contrain-	72
	dications of ECMO	
13	Summarizes the management of ARDS	74
14	Sequential organ failure assessment score	81
	(SOFA score)	
15	Lung injury score (Murray score)	82
16	Comparison between group A and group	85
	according to demographic data	
17	Comparison between group A and group B	87
	according to heart rate	
18	Comparison between group A and group B	88
	according to MAP (mmHg)	

19	Comparison between group A and group B according to SPO ₂ (%)	89
20	Comparison between group A and group B according to CVP	90
21	Comparison between group A and group B according to temperature	91
22	Comparison between groups according to ABG	92
23	Comparison between groups according to improvement in gas exchange	93
24	Comparison between group A and group B according to PaO ₂ / FIO ₂ (mmHg)	94
25	Comparison between group A and group B according to patient on mechanical ventilation (days)	95
26	Comparison between groups according to number of extubated patients at day 7	96
27	Comparison between group A and group B according to CRP	97
28	Comparison between group A and group B according to D-diameter	98
29	Comparison between group A and group B according to WBCs	99
30	Comparison between group A and group B according to ICU stay	100
31	Comparison between groups according to the number of patient discharge from ICU	101
32	Comparison between groups according to outcome and mortality rate	102
33	Comparison between group A and group B according to SOFA score	103
34	Comparison between group A and group B according to lung injury score	104

List of Figures

Fig.	Title	Page
1	Injury occur in the alveoli during exudative phase of ARDS	14
2	Alveolar change during fibroproli-ferative phase of ARDS	16
3	Time course of acute respiratory distress syndrome	16
4	Biomarkers of acute respiratory distress syndrome organized by pathways and phases of lung injury	20
5	Radiological evolution of acute respiratory distress syndrome over the first week	32
6	Typical computed tomography features of acute respiratory distress syndrome	33
7	Long-term evolution of acute respiratory distress syndrome	37
8	Changes of O ₂ supplied by ECMO. Oxygen supplied by ECMO (VO ₂ ECMO)	69
9	Vascular access and cannula position in ECMO	70
10	Comparison between group A and group B according to heart rate	87
11	Comparison between group A and group B according to MAP	88
12	Comparison between group A and group B according to SPO2 (%)	89
13	Comparison between group A and group B according to CVP	90
14	Comparison between group A and group B according to temperature	91
15	Bar chart between groups according to ABG	92

16	Bar chart between groups according to	93
	improvement in gas exchange	
17	Comparison between group A and group B	94
	according to PaO2/ FIO2 ratio (mmHg)	
18	Comparison between group A and group B	95
	according to patient on mechanical	
	ventilation (days)	
19	Bar chart between groups according to	96
	Number of extubated patients at day 7	
20	Comparison between group A and group B	97
	according to CRP	
21	Comparison between group A and group B	98
	according to D-dimer	
22	Comparison between group A and group B	99
	according to WBCs	
23	Comparison between group A and group B	100
	according to ICU stay	
24	Bar chart between groups according to the	101
	number of patient discharge from ICU	
25	Bar chart between groups according to	102
	mortality rate	
26	Comparison between group A and group B	103
	according to SOFA score	
27	Comparison between group A and group B	104
	according to lung injury score	

Abstract:

Introduction: Acute respiratory distress syndrome (ARDS) is the clinical manifestation of severe acute lung injury. It is characterized by dyspnea, profound hypoxemia, diffuse bilateral infiltrates secondary to non-cardiogenic pulmonary edema on chest radiography, and decreased lung compliance. It occurs most frequently in the setting of sepsis, aspiration of gastric contents, trauma, or multiple blood transfusions. ARDS places a significant burden on the healthcare system, with an estimated prevalence of 7% of ICU admissions and hospital mortality rate 50%. Pulmonary and systemic inflammations are pathophysiologic hallmarks of this syndrome, activation of the glucocorticoid receptor in pulmonary and essential circulating cells is an step in restoring homeostasis. Provision of supplemental oxygen, lung rest, and supportive care are the fundamentals of therapy. Acute respiratory distress syndrome frequently requires endotracheal intubation and mechanical ventilation. A low tidal volume and low plateau pressure ventilator strategy is recommended to avoid ventilator-induced injury. The use of low-dose corticosteroids was associated with improved mortality and morbidity outcomes without increased adverse reactions. The aim of this study is to compare the effectiveness of methylprednisolone to hydrocortisone in of PaO2/FiO₂ ratio. improvement reduction inflammatory marker, reduce duration of mechanical ventilation, reduce duration of intensive care unit stay and decrease of mortality rate in critical ill patients with ARDS.

Introduction

Acute respiratory distress syndrome (ARDS) is a critical syndrome caused by heterogeneous etiologies, and is characterized by acute progression of respiratory symptoms and signs, bilateral diffuse infiltrates on chest imaging, and severe hypoxemia. The severity of ARDS is associated with poor prognosis and higher mortality, and, by the Berlin definition, diagnostic hypoxemia is defined as decreased arterial PaO₂/FiO₂ ratio with parameters of 201-300 mmHg for mild ARDS, 101-200 mmHg for moderate ARDS, and ≤100 mmHg for severe ARDS (*Lee*, 2017).

ARDS is a severe lung disease characterized by a very complex pathophysiology, involving not only the respiratory system but also nonpulmonary distal organs. The predominant cause of death in ARDS is not severe hypoxemia, which is one of the defining criteria of ARDS, but multiple organ failure (MOF). Despite improvements in outcome due to lung protective ventilation strategies using low tidal volumes, the mortality rate from acute respiratory distress syndrome (ARDS) remains unacceptably high, ranging from 34% to 64% (*Del Sorbo and Slutsky*, 2011).

Strong association has been established between dysregulated systemic inflammation and progression of acute respiratory distress syndrome (ARDS). In ARDS patients, glucocorticoid receptor-mediated down regulation systemic inflammation is essential restore homeostasis, decrease morbidity and improve survival and can be significantly enhanced with prolonged low-tomoderate dose glucocorticoid treatment. A large body of evidence supports a strong association between prolonged glucocorticoid treatment-induced down regulation of the inflammatory response and improve pulmonary and extrapulmonary physiology (Schwingshackl and Meduri, *2016*).

Aim of the Work

The aim of this study was to compare the outcome and effectiveness of hydrocortisone to methylprednisolone in treatment of acute respiratory distress syndrome in critically ill adult patients.

Acute Respiratory Distress Syndrome

A) Background:

Since World War I, it has been recognized that some patients with nonthoracic injuries, severe pancreatitis, massive transfusion, sepsis, and other conditions develop respiratory distress, diffuse lung infiltrates, and respiratory failure, sometimes after a delay of hours to days. In 1967, *Ashbaugh and his colleagues* were described 12 such patients, using the term "adult respiratory distress syndrome" to describe this condition (*Ashbaugh et al.*, 1967)

Before research into the pathogenesis and treatment of this syndrome could proceed, it was necessary to formulate a clear definition of the syndrome. Such a definition was developed in 1994 by the American-European Consensus Conference (AECC) on acute respiratory distress syndrome (ARDS). The term "acute respiratory distress syndrome" was used instead of "adult respiratory distress syndrome" because the syndrome occurs in both adults and children (*Bernard et al.*, 1994).

ARDS was recognized as the most severe form of acute lung injury (ALI), a form of diffuse alveolar injury.

The AECC defined ARDS as an acute condition