Reservoir Characterization Using Bore Hole Logs and Core data for Neag-1, -2 and -3, Western Desert. Egypt

THESIS

Submitted to award the degree of DOCTOR OF PHILOSOPHY OF SCIENCE IN GEOPHYSICS

By MOHAMED ABD EL-HAMID EL-BAGOURY

(M. Sc. Exploration Geophysics, Al-Azhar University) 2015

Under the supervision of

Prof. Dr. Abd El Moktader A. El Sayed

Professor of Reservoir Geophysics
Department of Geophysics,
Faculty of Science, Ain Shams University

Dr. Ayman Shebl Dr. Ahmed Salah

Lecturer of Well logging EGAS former vice chairman for

Department of Geophysics, Exploration.

Faculty of Science, Nasr city,

Ain Shams University Egypt

Geophysics Department, Faculty of Science
Ain Shams University
2019

بِسْمِ اللهِ الرَّحْمَنِ الرَّحِيمِ

إِنَّ الَّذِينَ ءامَنُوا وَعَمِلُوا الصَّلِحْتِ إِنَّا لا نُصْيعُ أَجِرَ مَن أَحسَنَ عَمَلًا (30)

حدق الله العطيم سورة الكهف

Verily, as for those who believed and did righteous deeds, certainly We shall not make the reward of anyone to be lost who does his (righteous) deeds in the most perfect manner

Approval Sheet

Name: Mohamed Abd el-Hamid El-Bagoury

Title: Reservoir Characterization Using Bore Hole Logs and Core

data for Neag-1, -2 and -3, Western Desert. Egypt

Thesis Submitted to award the Degree of DOCTOR OF PHILOSOPHY OF SCIENCE IN GEOPHYSICS Under the supervision of

1- Prof. Dr. Abd El Moktader A. El Sayed,

Professor of Reservoir Geophysics, Faculty of Science, Ain Shams University, Cairo - Egypt

2- Dr. Ayman Shebl,

Lecturer of Well logging, Geophysics Department, Faculty of Science, Ain Shams University, Cairo - Egypt

3- Dr. Ahmed Salah,

Former Exploration Manager (Petrobel), EGAS Former vice chairman of Exploration, Nasr city, Cairo – Egypt.

Approving committee

1- Prof. Dr. Attia Mahmoud Attia

Professor of Petroleum Engineering and Dean of Faculty of Energy in BUE Egypt.

2- Prof. Dr. Ahmed Zakriya Noah

Professor of Reservoir Petrophysics, Geophysics Department, EPRI.

3- Prof. Dr. Abd El Moktader A. El Sayed

Professor of Reservoir Geophysics, Faculty of Science, Ain Shams University.

Acknowledgement

All my gratitude to Allah, to whom goes all my thanks and appreciation, and to whom I owe the courage and strength to complete my thesis.

I would like to express my deeply thanks and gratitude to Prof. Dr. Abd El Moktader Abd El-Aziz El-Sayed, professor of reservoir geophysics, Faculty of science, Ain Shams university, for planning and supervising the entire steps of this research, guidance, interpretation and revision.

I also acknowledge Dr. Ahmed Salah, EGAS former deputy vice chairman for exploration, and former Petrobel exploration manager for his support, providing helpful literature and sharing practical experience from the field of Petrophysics.

I also acknowledge Dr. Attia M. Attia professor of petroleum engineering and dean faculty of energy, British university in Egypt for thesis reviewing and productive comments.

I'm also indebted to Dr. Ayman Shebl El Sayed, Geophysics department, Faculty of science, Ain Shams University, for his encouragement through this work.

The Author is expressing his thanks to colleges from Bapetco exploration and petroleum engineering departments for sharing ideas.

I would like also to thank EGPC and BAPETCO to give me the permission to use the technical data and facilities to publish this study.

Finally, I would like to express my endless gratitude to my family for their patience and help during the completion of this study.

List of Abbreviations

Ka, absolute permeability

P_b bouncy pressure

V_b bulk volume of the sample

P_C capillary pressure

BQv cation Exchange capacity

m cementation factor

C_t conductivity

 θ contact angle

R_t deep resistivity

DEN density log

 $\rho_{\rm w}$ formation water density

ρ_{hc} formation hydrocarbon density

g gravitational acceleration constant

F formation factor

GR gamma ray log

V_g grain volume

h height above free water level

λ lambda

J (sw) leverett J-function

 T_{ma} matrix transit time

 r_{50} median pore throat size

a Archie multiplier

C compaction multiplier

NEU neutron log

K permeability

Ø porosity

r₃₅ pore throat radius

P_f pore filling minerals

PEF photoelectric Factor log

r radius of pore aperture as capillary tube

R_{sh} resistivity of shale

n saturation exponent

 σ surface tension

TS thin section

τ tortuosity

 ΔT transit time

Sgr specific surface area for a porous media

Fs shape factor

Sw water saturation

V_{sh} volume of shale

R_w water resistivity

XRD x-ray diffraction

ABSTRACT

An integrated petrophysical study for the Bahariya reservoir using bore hole logs and core data. The Bahariya formation has a high economic importance in north western desert as hydrocarbon bearing rocks which varies in origin and architecture from fluvio-marine to shallow marine sediments. It belongs to the Cenomanian (Upper Cretaceous) in age. North east Abu Gharadig fields NEAG-1, -2 and -3 exhibit structural and stratigraphic processes features characterizing the Bahariya reservoirs.

Both lithological and mineralogical variations are detected in the Bahariya reservoir rocks while, the laboratory measurements such as porosity, grain density, electrical resistivity, permeability and capillary pressure were carried out for 380 core sample showing wide petrophysical data ranges which requires more investigations related to pore spaces, storage capacity and flow capacity of the Bahariya formation. Thin sections and X-ray diffraction technique are carried out for fifty seven representative samples. Significance relations between pore filling mineralogy and both porosity and permeability are investigated and classified as permeability zonation according to total pore filling minerals.

Graphical method is used for characterizing the types of hydraulic flow units of Bahariya samples into four groups; each group is controlled by a certain volume of fluid flow and incremental pore sizes. High degree of heterogeneity on pore scale is indicated from mercury injection capillary pressure (MICP) measurements. The effective pore radius (r_{35}) calculated from MICP is investigated and correlated with the hydraulic flow units of the Bahariya reservoir providing type of fluid flow and size

of pore throats, A consistent relationship is calculated among porosity, permeability and pore throat size (r_{35}) .

The electrical resistivity data of the Bahariya samples were obtained, while formation resistivity factor (F), cementation factor (m), cation exchange capacity (CEC), mounce potential (φ) and saturation exponent (n) were calculated. Significant relations between formation resistivity factor and both porosity and permeability are performed; while cation exchange capacity and mounce potential are found to be strongly dependent on clay filling minerals specially kaolinite. The saturation exponent (n) and cementation factor (m) are strongly correlated while unique interrelation is characterizing the Bahariya rocks for clean and shaley sands. Each type is identified by core samples or by studying open hole logs on the way to evaluate and interpret the hydrocarbon potentiality from electrical resistivity measurements.

The hydraulic conductivity of the studied Bahariya samples characteristic of pore system is classified into micro-pores, meso pores and macro pores as per Winland classification. Coefficients of correlation of micro-meso pores and macro pores showed clear differences in porosity, permeability, residual oil saturation and pore throat radius (r_{35}) which are used to address the water saturation in transition zone function of the capillary pressure.

Coefficients of both hydraulic and electrical conductivity are identified while several mathematical formulas have been developed to predict some petrophysical parameters showing the higher coefficient of correlations. The obtained formulas can be used for predicting the permeability from bore hole logs and characteristics of net pays

thicknesses, reservoir quality and electro-facies. They calibrated from enhanced bore hole images for high shale content streaks.

The workflow in the present work is helpful to start the evaluation process with porosity and permeability to provide the other parameters as formation resistivity factor (F), cementation factor (m), saturation exponent (n) and interpret the hydrocarbon potential to fulfill a robust capillary and bound water calculation. Many petrophysical models have been performed to be used for reservoir evaluation and characterization.

TABLE OF CONTENTS

CHAPT	ER 1	1
INTROI	DUCTION	1
1.1.	Location of Study Area	1
1.2.	Exploration History	3
1.3.	Scope of Research	3
1.4.	Geologic setting	4
1.5.	Abu Gharadig Basin	5
1.5.	1. Neag-1 Structure	7
1.5.	2. Neag-2 Structure	7
1.5.	3. Neag-3 Structure	7
1.6.	Stratigraphy of Bahariya Reservoir	10
1.7.	Reservoir Subdivisions and Correlation	11
1.8.	Reservoir Facies Characterization	16
CONC	LUSION	21
CHAPT	ER 2	23
RESERV	OIR PETROGRAPHY	23
2.1.	Analytical Procedure of Bahariya Rock Samples	23
2.1.	1 Thin Section Preparation Technique	24
2.1.	2 XRD Methodology	24
2.2.	General Features of the Bahariya Reservoir Rocks	25
2.3.	Detrital Components	26
2.4.	Authigenic Components / Cements	28
2.5.	Textural Characteristics and Porosity	32
2.6.	Bahariya Reservoir Rock Forming Minerals and Diagensis	34
2.7.	Mineralogy and Rock Properties	37
CONCLU	JSIONS	37

CHAPTE	CR 3	38
RESERV	OIR PARAMETERS	38
3.1.	Sampling Procedures	38
3.2.	Porosity	40
3.3.	Permeability	41
3.3.1.	Permeability Measurements	41
3.4.	Pore Throat Radius	42
3.5.	Oil-Brine Capillary Pressure	43
3.6.	Formation Resistivity Factor	45
3.7.	Formation Resistivity Index	46
3.8.	Core Conductivity Test Results (CO/CW)	47
3.9.	Fluid Saturation by Dean Stark Method	49
CONCLU	SIONS	51
СНАРТЕ	CR 4	51
BAHARIY	YA RESERVOIR ROCK CHARACTERIZATION	51
4.1.	Reservoir Porosity	51
4.1.1.	Porosity and Pore Filling Mineralogy	51
4.2.	Reservoir Permeability Zonation	53
4.2.1.	Petrographic Description of Each Pore Type	54
4.2.1.	Open hole logs and Permeability Relationship	57
4.3.	Porosity and Permeability Relationship	58
4.3.1.	Pore Throat Radius (r ₃₅)	60
4.3.2.	Storage and Flow Capacity	61
4.4.	Electrical Properties	64
4.4.1	Formation Resistivity Factor and Porosity	64
4.4.2.	Porosity and Cementation Formation Relationship	65
4.4.3.	Formation Resistivity Factor and Permeability	66
4.4.4.	Saturation Exponent and Cementation Factor	67

4.5		Saturation Exponent versus Permeability	68
4.6.		Cation Exchange Capacity	69
4.7.		Mounce Potential	70
4.8.		Reservoir Saturation	71
4.3	8.1.	Leverett J-function	73
4.3	8.1.1.	Drawbacks of J-function	77
4.3	8.2.	Brooks-Corey (Lambda)	77
4.3	8.2.1.	Advantages of Brooks-Corey Lambda	81
CON	CLUS	SIONS	82
OTT 1			2.4
		R 5	
	N HO	LE LOGS EVALUATION	
5.1.		Introduction	84
5.2.		Quality Control	84
5.3.		Evaluation Workflow	85
5.4.		Shale Parameters:	87
5.5.		Lithology and Net Sand Determination	90
5.6.		Volume of Shale (Vsh)	90
5.0	6.1.	Gamma ray Method Using Linear Relationship	90
5.0	6.2.	Neutron Method	91
5.0	6.3.	Resistivity Method	91
5.7.		Clay Types	91
5.8.		Bahariya Mineralogy	93
5.9.		Log Porosity	95
5.10.		Porosity from Density log	95
5.11.		Sonic Derived Porosity	97
5.12.		Calibration of Borehole Logs with Core Data	98
5.13.		Porosity Statistical Summary for Neag Fields	99
5.14.		Log Saturation	101

5.15.	Rw Estimation from Pickett Plot
5.16.	Archie Model102
5.17.	Shaly Sand Models103
5.17.1.	Indonesia Model
5.17.2.	Modified Simandoux Model
5.17.3.	Waxman Smith Model
5.17.4.	Low Resistivity Pay
5.17.5.	Drawbacks of Low resistivity pay and Waxman smith Methods111
5.18.	Net Pay Cutoffs112
CONCLU	SIONS113
CHA DEE	D. C
	R 6
INTEGRA	ATED PETROPHYSICAL MODELS115
6.1.	Integrated Petrophysical Workflow115
6.2.	Permeability Prediction from Open Hole Logs117
6.3.	Formation Factor Prediction
6.4.	Permeability Prediction
6.5.	Cementation Factor
6.6.	Saturation Exponent
6.7.	Saturation Height Function;
6.8.	Comparison between Saturation Height Function and Log Interpreted Saturation
6.9.	Computer Processed Interpretation135
6.9.1.	Neag-2-E-1 CPI Summary Log
6.9.2.	AL-Fadl-4 CPI Summary Log
6.9.3.	AL-Qadr-3 CPI Summary Log
6.9.4.	AL-Fadl-2 CPI Summary Log
6.9.5.	Neag-3-1 CPI Summary Log
CONCLU	SIONS 1/13

SUMMARY AND CONCLUSIONS	145
BUSINESS CONTEXT AND RECOMMENDATIONS	152
REFERENCES	154
APPENDIX	
ARABIC SUMMARY	

LIST OF FIGURES

Fig.1.1.	Location map of study area2
Fig.1.2.	Basins of Western Desert5
Fig.1.3.	Basic and major tectonic remarks on Western Desert, Egypt6
Fig.1.4.	2D Arbitrary Seismic line between Neag-1 and NEAG-28
Fig.1.5.	2D Arbitrary Seismic line between Neag-1 and NEAG-39
Fig.1.6.	North Western Desert Stratigraphic Column10
Fig.1.7.	Bore hole image interpretation indicting for unconformity surface
Fig.1.8.	Geologic markers used for detailed correlation14
Fig.1.9.	Neag-1, -2 and -3 correlation panel
Fig.1.10.	Conceptual depositional model for upper and lower Bahariya Formation
Fig.1.11.	Interpreted well log correlation showing variance in depositional environment
Fig.1.12.	The main reservoir rock types of the Bahariya reservoir facies
Fig.2.1.	X-ray diffraction chart of a bulk sample from Neag field25
Fig.2.2.	Thin section images showing corroded irregular surfaces and quartz overgrowths
Fig.2.3.	Thin section images showing flaser bedding in Bahariya sample
Fig.2.4.	Thin-section image (plane polarized light) Sample (2R) subfeldspathic wacke showing common pore filling and grain coating detrital clays (green arrows) partial dissolution of K-Feldspars of yellow color (red arrows)
Fig.2.5.	Thin-section image (plane polarized light). Sample (8R) Feldspathic Arenite showing Ferro dolomite (blue arrow), common Kaolinite and detrital clays (green arrows), sucrosic dolomite rhombs (brown arrows)