

A Comparative Study between Intrathecal Fentanyl and Dexmedetomidine as Adjuvants to Hyperbaric Levobupivacaine 0.5% in Patients Undergoing Infra Umbilical Surgeries

Thesis

Submitted for Partial Fulfillment of M. Sc. Degree in **Anesthesiology**

By

Loay Ashraf Taha Mohammed

M.B.B.Ch

Under Supervision of

Prof. Dr. Sherif Farouk Ibrahim

Prof. of Anesthesiology, I.C.U. and Pain Management Faculty of Medicine – Ain Shams University

Dr. Mohammed Mohammed Abd El-Fattah Ghoniem

Lecturer of Anesthesiology, I.C.U. and Pain Management Faculty of Medicine – Ain Shams University

Dr. Ibrahem Mohamed El-Sayed Ahmed

Lecturer of Anesthesiology, I.C.U. and Pain Management Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

Really I can hardly find the words to express my gratitude to Prof. Dr. Sherif Farouk Ibrahim, Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and the tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would also like to express my sincere appreciation and deep gratitude to <code>Dr. Mohammed Mohammed Abdel</code> <code>El-fattah Ghoniem, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his constructive directions, continuous support and patience throughout the whole work.</code>

I cannot forget the great help of <code>Tr. Ibrahem</code>
Mohamed <code>Cl-sayed</code> Ahmed, Lecturer of Anesthesia,
Intensive Care and Pain Management, Faculty of
Medicine, Ain Shams University, for his invaluable efforts,
tireless guidance and for his patience and support to get
this work into light.

Last but not least, I dedicate this work to my family and my beloved fiance, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Joay Ashraf Jaha Mohammed

Tist of Contents

Title	Page No.
List of Abbreviations	
List of Tables	7
List of Figures	8
Introduction	1 -
Aim of the Work	10
Review of Literature	11
Materials and Methods	31
Results	39
Discussion	48
Conclusion	53
Summary	54
References	
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
μg/kg	Microgram/kilogram
k	Kappa
L	First lumbar vertebra
Las	Local anesthetics
m/s	Milli-second
<i>MAP</i>	Mean Arterial Pressure
Meq	Milli-equivalent
METs	$Metabolic\ Equivalent$
<i>Mg</i>	Milligram
Mg++	Magnesium
Min	Minute
Ml	Milliliter
mmHg	Millimeter mercury
<i>Mmole</i>	Milli-mole
<i>NE</i>	Nor-epinephrine
NGF	Nerve Growth Factor
<i>NMDA</i>	N- $Methyl$ - D - $Aspartate$
<i>NO</i>	Nitric Oxide
<i>NS</i>	Nociceptive Specific neurons
NT	Neurotransmitter
ORIF	Open reduction and internal fixation
PCA	Patient Controlled Analgesia
PGE	$Prostaglandin\ E$
<i>PMN</i>	Polymorphonuclear

Tist of Abbreviations cont...

Abb.	Full term
POCD	.Postoperative Cognitive Dysfunction
PTH	.Parathyroid Hormone
R	.Rectus-
S	.Sacral vertebra
S	.Senister-
SD	.Standard Deviation
ST	.Spinothalamic Tract
<i>T</i>	.Thoracic vertebra
TENS	.Transcutaneous Electrical Stimulation
TNF	.Tumour Necrosis Factor
VAS	.Visual Analogue Scale
WDR	.Wide Dynamic Range neurons
α	.Alpha

Tist of Tables

Table No.	Title	Page No.
Table (1):	Levobupivacaine is available in $2.5~(0.5~(0.5\%))$ and $7.5~(0.75\%)$ solution	•
Table (2):	Important differences between a spina an epidural anesthesia	
Table (3):	Contraindications to central neuroblock	
Table (4):	Bromage scale for assessment of block	
Table (5):	ASA classification	31
Table (6):	Comparison between groups according demographic data.	
Table (7):	Comparison between groups according motor and sensory block	•
Table (8):	Comparison between groups according the heart rate	-
Table (9):	Comparison between groups according mean arterial blood pressure	•
Table (10):	Comparison between groups according block regression and duration of seand motor block	nsory
Table (11):	Comparison between groups according visual analogue scale (VAS)	_
Table (12):	Comparison between groups according postoperative complications.	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	The common surface landmarks vertebral column	
Figure (2):	(a) Sagittal section of the vertebral column. (b) Transdissection at the level of T9	of the asverse
Figure (3):	The termination of the spinal cord	14
Figure (4):	(a) Cross-sectional view of the l region depicting the location of epidural space and subarachnoid associated with neuraxial procedur	of the space
Figure (5):	Surgical stress response	16
Figure (6):	Baseline hemodynamic variable study population	
Figure (7):	Heart rate at different time interv	als41
Figure (8):	Mean arterial blood pressur different time intervals.	
Figure (9):	Variation in VAS score in the groups	

on •

Introduction

Despite availability of many new additives for central neuraxial blockade, there is a constant search for better additives to increase duration of analgesia with minimum side effects. Levobupivacaine which is the pure S - enantiomer of racemic bupivacaine that has a beneficial ratio of sensory to motor block in neuraxial anesthesia. Preclinical animal and volunteer studies showed less cardiac toxicity and neurotoxicity than bupivacaine. It seems to be an alternative local anesthetic agent in epidural anesthesia (*Dubé and Granry*, 2013).

Fentanyl is a potent, short-acting, highly lipophilic, synthetic opioid analgesic. It has been commonly used as an adjuvant for post operative analgesia (*Bernards*, 2002).

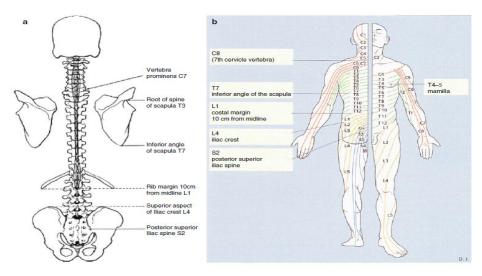
Dexmedetomidine a selective Alpha 2 agonist, provides stable hemodynamic conditions and good quality of intra operative and prolonged post operative analgesia with minimal side effects (*Grewal*, 2011).

75 Patients, undergoing infraumbilical surgeries eg; inguinal hernia, varicocele and hydrocele were randomly allocated into one of three groups to compare the onset, duration of sensory and motor block, duration of post operative analgesia and possible side effects in patients undergoing infra umbilical surgeries. Perioperative hemodynamics, post-operative pain score, onset of the block and post-operative complications were the parameters of the study.

AIM OF THE WORK

This study is designed to assess and compare the effect of intrathecal Fentanyl and Dexmedetomidine as adjuvants to hyperbaric Levobupivacaine 0.5% regarding the onset, duration of sensory and motor block, duration of post operative analgesia and possible side effects in patients undergoing infra umbilical surgeries. The comparison was regarding intra operative hemodynamics, pain measured by the visual analogue scale (VAS), and post-operative complications.

REVIEW OF LITERATURE


Anatomical Considerations

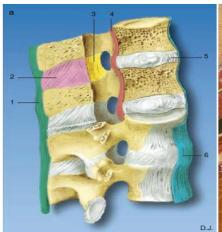
thorough appreciation for the anatomy of the spinal structures is necessary for appropriate technique, patient selection, and management of neuroaxial anesthesia.

I- Anatomy of the vertebral column

A. Surface landmarks:

Surface landmarks are generally used to locate a particular vertebral level. The inferior margin of the 12_{th} rib lies at the level of the L_1 vertebra, Tuffier's line(the line connecting the iliac crests) crosses the vertebral column at the level of the L4 vertebra, while the posterior superior iliac spine lies at level with S_2 (**Figure 1**) (*Priebe*, 2010).

Figure (1): The common surface landmarks of the vertebral column (*Kumra*, 2008).



B. Ligaments of the Vertebral Column:

Adjacent vertebrae are united by ligaments that run the length of the vertebral column along both its posterior and anterior aspects (Figure 2). These serve to resist excess forward or backward bending movements of the vertebral column, respectively. The anterior longitudinal ligamentruns down the anterior side of the entire vertebral column, uniting the vertebral bodies. It serves to resist excess backward bending of the vertebral column. The supraspinous ligamentis located on the posterior side of the vertebral column, where it interconnects the spinous processes of the thoracic and lumbar vertebrae. This strong ligament supports the vertebral column during forward bending motions.

The posterior longitudinal ligamentis found anterior to the spinal cord, where it is attached to the posterior sides of the vertebral bodies. The ligamentumflavum "yellow ligament"is found posterior to the spinal cord. That consists of a series of short, paired ligaments (Right and Left), each of which interconnects the lamina regions of adjacent vertebrae (Krechel et al., 2009).

Figure (2): (a) Sagittal section of the vertebral column illustrating the ligaments of the vertebral column.(1) Supraspinous ligament, (2) interspinous ligament, (3) ligamentumflavum, (4) posterior longitudinal ligament, (5)intervertebral disc, and (6) anterior longitudinal ligament. (b) Transverse dissection at the level of T9(1) Ligamentumflavum, (2) posterior epidural space with fat, (3) anterior epidural space with veins, (4) spinal duramater, (5) subarachnoid space with spinal cord, (6) posterior longitudinal ligament, (7) anterior longitudinal ligament, (8) zygapophysial joint, (9) aorta, and (10) sympathetic ganglion (*Kumra*, 2008).

II- Anatomy of The spinal cord:

The spinal cord is about 46 cm long and is the caudal continuation of the medulla oblongata, which extends from the atlas to the conus medullaris (the lower edge of the first lumbar vertebra). The length of the spinal cord varies with age, in adults, the conus ends at the level of L_1 - L_2 : Spinal anesthetics must therefore be performed at the L_2 - L_3 intervertebral space or lower to avoid the risk of spinal cord injury (**Figure 3**) (*Al-Alami et al.*, 2009).

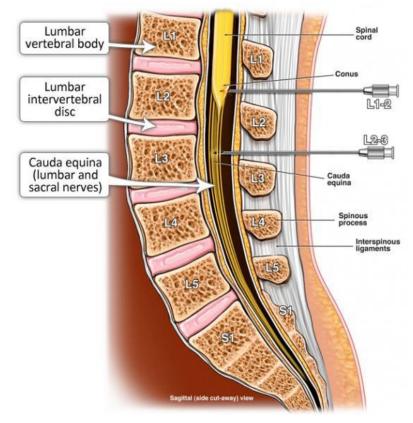


Figure (3): The termination of the spinal cord (Chodorowski et al., 2003).

III- Spinal dermatomes:

Via its branching spinal nerves, each segment of the spinal cord provides the sensory supply for a specific area of skin, known as the dermatome. These areas of skin, which often overlap, are very important for checking and verifying the spread of anesthesia (Kumra, 2008).

The subarachnoid Space

The subarachnoid space is the interval between the arachnoid membrane and the pia mater. It is occupied by

delicate connective tissue trabeculae and intercommunicating channels containing cerebrospinal fluid (CSF) (figure 4)

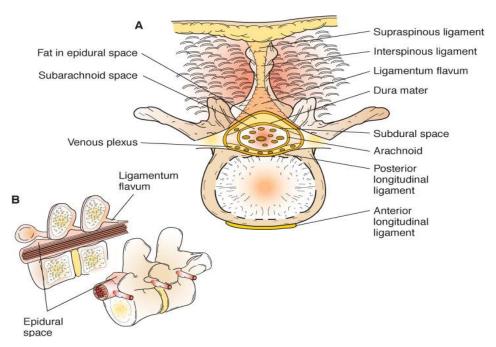


Figure (4): (a) Cross-sectional view of the lumbar region depicting the location of the epidural space and subarachnoid space associated with neuraxial procedures (Al-alami et al., 2009).

Physiology of Pain

Definition of pain:

The International Association for the Study of Pain (IASP) defines pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage.

Stress response to surgery and pain

The stress response is the name given to the hormonal and metabolic changes which follow injury or trauma. This is