سامية محمد مصطفى

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

سامية محمد مصطفي

شبكة العلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

سامية محمد مصطفى

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعيدا عن الغيار

سامية محمد مصطفي

شبكة المعلومات الجامعية

المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة عين شعور المسلمة ا

سامية محمد مصطفى

شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

NEW APPROACHES TO INTERPRET GRAVITY DATA

A Thesis Submitted

To

Geophysics Department,

Faculty of Science, Cairo University

For the Degree of Doctor of Philosophy (Ph.D.)
in Geophysics (Potential Field Methods)

By

EID RAGAB ABD ELFATAAH ABO-EZZ

(B. Sc. in Geophysics, 1994)

(M. Sc. in Geophysics, 1999)

Giza, Egypt

2001

APPROVAL SHEET

TITLE OF THE Ph.D. THESIS

NEW APPROACHES TO INTREPRET GRAVITY DATA

Name of Candidate: Eid Ragab Abd Elfataah Abo-Ezz

Submitted to the Faculty of Science-Cairo University

Supervision Committee:

Prof. Dr. El-Sayed Mohamed Abdelrahman

Professor of potential methods, Geophysics Department,

Faculty of Science, Cairo University

Dr. Hesham Mohamed El-Araby

Assistant Prof., Dept. of Geophysics, Faculty of Science, Cairo University

Dr. Tarek Mohamed El-Araby

Lecturer, Dept. of Geophysics, Faculty of Science, Cairo University

Approved

Prof. Dr. El-Sayed M. Abdelrahman

Head of Geophysics Department

Faulty of Science, Calro University

This thesis is dedicated to my professor E. M.

Abdelrahman, Head and Chairman of Geophysics

Department, Faculty of Science, Cairo University, for

his continuous support during the progress of this

thesis, his patience, his moral guidance and his

superb way of supervision and without complaint.

ACKNOWLEDGMENTS

My great dept and sincere gratitude is due to almighty Allah who, in his infinite mercy and wisdom, made the completion of this thesis possible.

I am indebted to Prof. Dr. El-Sayed M. Abdelrahman, Head of Geophysics Department, and Professor of potential field methods, Geophysics Department, Faculty of Science, Cairo University, for his patience, his moral guidance, his superb way of supervision, continuous encouragement and technical review of the manuscript. I am also indebted to Dr. Hesham M. El-Araby, Assistant Professor of potential field methods, Geophysics Department, Faculty of Science, Cairo University, for his supervision and helpful advice during this thesis. I am also indebted to Dr. Tarek M. El-Araby, lecturer of potential field methods, Geophysics Department. Faculty of Science, Cairo University, for his supervision and helpful advice during this work.

It is my most pleasant duty to express my sincere gratitude to my family whose contribution cannot be put in words but can only be felt deeply in the heart.

TABLE OF CONTENTS

	page
ABSTRACT	1
GENERAL INTRODUCTION	4
CHAPTER I	
A GENERAL REVIEW OF REGIONAL-RESIDUAL	
SEPARATION, DEPTH, AND SHAPE ESTIMATION	
TECHNIQUES FROM GRAVITY DATA	6
INTRODUCTION	6
REVIEW OF THE PREVOIUS REGIONAL-RESIDUAL SEPARATION	
TECHNIQUES	6
1- Smoothing Techniques	9
2- Grid Method or Analytical Techniques	10
3- Least-Squares Methods:	12
REVIEW OF THE PREVIOUS DEPTH AND SHAPE ESTIMATION	
TECHNIQUES FROM GRAVITY DATA	13
CHAPTER II	
A NON-ITERATIVE APPROACH TO DEPTH	
DETERMINATION FROM RESIDUAL GRAVITY ANOMALY	18
INTRODUCTION	18
THE METHOD	19
DISCUSSION OF THE RESULTS	21
ANALYSIS OF THE METHOD	2.1

	Page
SYNTHETIC EXAMPLES	80
OPTIMUM-ORDER REGIONAL DETERMINATION	83
THEORETICAL EXAMPLES	84
APPLICATION TO FIELD EXAMPLE	96
CHAPTER VI	
SUMMMARY AND CONCLUSIONS	103
REFERENCES	105
APPENDCIES	113
APPENDIX I	113
APPENDIX II	116
APPENDIX III	119
APPENDIX IV	121
ARABIC SUMMARY	133
	•

7

LIST OF FIGURES

		Page
Figure 1	The Karrbo gravity anomaly profile, Vastmanland,	
	Sweden (Hedstrom, 1940 and Shaw and Agarwal, 1990).	27
Figure 2	Flow chart illustrating a generalized scheme for	
	automated depth, shape, and amplitude coefficient	
	estimation.	33
Figure 3	Error response in model parameters estimates. Abscissa:	
	model depth. Ordinate: percent error in model	
	parameters.	36
Figure 4	Gravity profiles and dome cross-section on line AA of the	
J	Bouguer gravity map, Humble salt dome, Harris County,	
	Texas, USA (Nettleton, 1976).	38
Figure 5	Composite gravity anomaly (Δg_1) of a buried vertical	
8	cylinder and first-order regional as obtained from	
	equation (24).	47
Figure 6	Composite gravity anomaly (\Delta g_2) of a buried horizontal	
1154100	cylinder and second-order regional as obtained from	
	equation (25).	48
Figure 7	Composite gravity anomaly (\Delta g_3) of a buried sphere and	
В	third-order regional as obtained from equation (26).	49
Figure 8	Second moving average residual gravity anomalies for	
8	s=2,3, and 4 km as obtained from gravity anomaly (Δg_1).	50
Figure 9	Second moving average residual gravity anomalies for	
	s=2,3, and 4 km as obtained from gravity anomaly (Δg_2).	51
Figure 10	Second moving average residual gravity anomalies for	
Ü	s=2,3, and 4 km as obtained from gravity anomaly (Δg_3).	52
Figure 11	Family of window curves of Z as a function of q for	
_	s=2,3, and 4 km as obtained from gravity anomaly (Δg_1)	
	using the present approach. Estimates of q and Z are,	
	respectively, 0.5, and 2 km.	56

		Pag
Figure 12	Family of window curves of Z as a function of q for	
	s=2,3, and 4 km as obtained from gravity anomaly (Δg_2)	
	using the present approach. Estimates of q and Z are,	
	respectively, 1.0, and 4 km.	57
Figure 13	Family of window curves of Z as a function of q for	
	s=2,3, and 4 km as obtained from gravity anomaly (Δg_3)	
	using the present approach. Estimates of q and Z are,	
	respectively, 1.5, and 6 km.	58
Figure 14	Second moving average residual gravity anomalies for	
	s=2,3, and 4 km as obtained from gravity anomaly (Δg_1)	
	after adding 10% random errors to the data.	62
Figure 15	Second moving average residual gravity anomalies for	
.	s=2,3, and 4 km as obtained from gravity anomaly (Δg_2)	
	after adding 10% random errors to the data.	63
Figure 16	Second moving average residual gravity anomalies for	
	s=2,3, and 4 km as obtained from gravity anomaly (Δg_3)	:
	after adding 10% random errors to the data.	64
Figure 17	Family of window curves of Z as a function of q for	
J	s=2,3, and 4 km as obtained from gravity anomaly (Δg_1)	
	after adding 10% random errors to the data using the	
	present approach. Estimates of q and Z are, respectively,	
	0.51 and 1.98 km.	66
Figure 18	Family of window curves of Z as a function of q for	
ð	s=2,3, and 4 km as obtained from gravity anomaly (Δg_2)	
	after adding 10% random errors to the data using the	
	present approach. Estimates of q and Z are, respectively,	
	1.1 and 4.4 km.	67
Figure 19	Family of window curves of Z as a function of q for	and the second
5	s=2,3, and 4 km as obtained from gravity anomaly (Δg_3)	
	after adding 10% random errors to the data using the	
	present approach. Estimates of q and Z are, respectively,	
	1.45 and 5.6 km.	68

VIII

		Page
Figure 20	Bougure gravity map, Humble salt dome, Harris County,	
S	Texas (Nettleton, 1962). Computations are made along	
	profile AÁ.	69
Figure 21	Observed gravity profile on line AÁ of the Humble	
J	dome, near Houston, TX, U.S.A.	70
Figure 22	Second moving average residual gravity anomalies on	
	line AÁ of the Humble dome, for s=1.5,1.75,2, and 2.25	
	km.	71
Figure 23	Family of window curves of Z as a function of q for	
	s=1.5,1.75, 2, and 2.25 km as obtained from the Humble	
	gravity anomaly profile using the present approach.	
	Estimates of q and Z are, respectively, 1.5 and 4.95 km.	72
Figure 24	Error response in depth parameter estimates. Abscissa:	
	model depth. Ordinate: percent error in depth	
	parameter.	81
Figure 25	Error response in amplitude coefficient parameter	
	estimates. Abscissa: model depth. Ordinate: percent	
	error in amplitude coefficient parameter.	82
Figure 26	Composite gravity anomaly (Δg_1) of a buried thin fault	
	and a zero-order regional.	85
Figure 27	Composite gravity anomaly (Δg_2) of a buried thin fault	
	and a first-order regional.	86
Figure 28	Composite gravity anomaly (Δg_3) of a buried thin fault	
	and a second-order regional.	87
Figure 29	Gazelle fault gravity anomaly, south Aswan, Egypt.	98
Figure 30	Data analysis of Figure 29 using first-derivative method.	99
Figure 31	Data analysis of Figure 29 using second-derivative	
Ü	method.	100
Figure 32	Data analysis of Figure 29 using third-derivative method.	101
Figure 33	Data analysis of Figure 29 using fourth-derivative	
_	method	102