

Molecular Design and Synthesis of Small Organic Molecules as Anticancer Targeting Agents

Thesis Presented by

Mahitab Khaled Abdel Maksoud Sobhy

Bsc. in Pharmaceutical Sciences
Misr International University
2012

Submitted in partial fulfillment of the *Master Degree*In Pharmaceutical Sciences (Pharmaceutical Chemistry) *Under the supervision of*

Dr./ Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Dean of the Faculty of Pharmacy
University of Sadat City

Dr./ Nahla A. H. Farag

Professor & Head of Pharmaceutical Chemistry Department, Faculty of Pharmacy Misr International University

Dr. / Deena S. M. Lasheen

Associate professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University

Faculty of Pharmacy
Ain Shams University
2019

Acknowledgements

I owe my deepest appreciation and truthful gratitude to **Professor Khaled**Abouzid Mohamed Abouzid, Professor of Pharmaceutical Chemistry & Dean of the Faculty of Pharmacy University of Sadat City, for suggesting the research point, scientific supervision, innovative ideas, immense knowledge, fruitful opinion, invaluable advice, precious suggestions, continuous encouragement and untiring help. I am really sincerely and profoundly indebted to him for his priceless guidance and endless support during the whole work and writing this thesis. He is a dedicated mentor and a role model, I am really honored to get to know an amazing person and mentor like Dr. Khaled.

It's also a pleasure to express my sincere appreciation and gratitude to **Professor Nahla Ahmed Hassan**, Professor and Head of Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, for her continuous encouragement, tremendous support, endless motivation and enthusiasm. I am heartily grateful to her indispensable opinion, real interest, trust, guidance throughout the whole work. Her passion for work and knowledge is the drive that kept me going forward throughout this long way.

I owe my deepest appreciation and truthful gratitude to **Dr Deena Samy**Mohamed Lasheen, Associate professor of Pharmaceutical Chemistry, Faculty of

Pharmacy, Ain Shams University, for her continuous interest, constant guidance

and support during all stages of this work and thesis writing.

I would like to express my sincere appreciation and deep gratitude to **Dr Samar Mowafy,** Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy,

Misr International University, for helping me in both experimental section and in

writing the thesis. Her door was always open for any questions. I am really

grateful for her supervision, unfailing support and continuous

encouragement .Without her passionate guidance and help throughout every step,

this thesis could not have been successfully conducted.

I would like to thank my colleague **Dr Mona Mohamed Abdelatty Mohamed,**Assistant Lecturer of Pharmaceutical Chemistry, Faculty of Pharmacy, Misr International University, for being an amazing, helpful lab mate. It was an honor for me to work with you in the same lab.

Finally, I am profoundly indebted to my parents, my sister, my husband, friends and my bigger family for their endless patience, understanding, encouragement and support all throughout the whole long way.

This work was published in Bioorg. Chem. 89 (2019) 102988.

Bioorganic Chemistry 89 (2019) 102988

Contents lists available at ScienceDirect

Bioorganic Chemistry

3D-QSAR pharmacophore modelling, virtual screening and docking studies for lead discovery of a novel scaffold for VEGFR 2 inhibitors: Design, synthesis and biological evaluation

Mahitab K. Sobhy^a, Samar Mowafy^a, Deena S. Lasheen^b, Nahla A. Farag^{a,*}, Khaled A.M. Abouzid^{b,c,*}

- * Pharmaceudcal Chemistry Department, Faculty of Pharmacy, Misr International University, Km28 Catro-Ismallia Road (Ahmed Orabi District), Catro, Egypt
- ^b Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia 11566, Cairo, Egypt
- ^c Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt

ABSTRACT

A series of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was successfully designed, synthesized and evaluated as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR 2) inhibitory activity. Compounds 6c and 6b showed enzyme inhibition of 97% and 87% at 10 µM, respectively, and exhibited potent dose-related VEGFR 2 inhibition with IC₅₀ values of 0.85 µM and 2.26 µM, respectively. The design of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was implemented via consecutive molecular modelling protocols prior to the synthesis and biological evaluation of the derivatives. First, sorafenib was docked in the binding site of VEGFR 2 to study its binding orientation and affinity, followed by the generation of a valid 3D QSAR pharmacophore model for use in the virtual screening of different 3D databases. Structures with promising pharmacophore-based virtual screening results were refined using molecular docking studies in the binding site of VEGFR 2. A novel scaffold was designed by incorporating the results of the pharmacophore model generation and molecular docking studies. The new scaffold showed hydrophobic interactions with the kinase front pocket that may be attributed to increasing residence time in VEGFR 2, which is a key success factor for ligand optimization in drug discovery. Different derivatives of the novel scaffold were validated using docking studies and pharmacophore mapping, where they exhibited promising results as VEGFR 2 inhibitors to be synthesized and biologically evaluated. 6,7-dihydro-5H-cyclopenta[d]pyrimidine is a new scaffold that can be further optimized for the synthesis of promising VEGFR 2 inhibitors.

Contents

List of fi	igures	viii
List of ta	ables	X
List of a	abbreviations	xi
Abstrac	t:	xiii
1. Ir	ntroduction	1
1.1.	Cancer	1
1.2.	Etiology of cancer	1
1.3.	Mechanism of occurrence of cancer	2
1.4.	Cancer therapy	3
1.4.1.	Conventional cancer treatments	4
1.4.2.	Targeted cancer treatments	11
1.5.	Protein kinases	12
1.5.1.	Overview	12
1.5.2.	Tyrosine kinases	13
1.5.3.	Structural features of tyrosine kinases	14
1.5.4.	Tyrosine kinase inhibitors	18
1.6.	RTKs with angiogenic activity: VEGFR pathway	23
1.6.1.	Angiogenesis	23
1.6.2.	Pathways regulating tumor blood supply	24
1.6.3.	VEGFR inhibitors	26
2. R	desearch objective	37
2.1. interacti	Design process based on previously reported SAR and ions of type II inhibitors of VEGFR2	Ū
2.2.	Design of novel VEGFR2 inhibitors using computational technology	niques.40
2.2.1.	Molecular docking of sorafenib	41

	2.2.2. 3D QSAR pharmacophore model generation	41
	2.2.3. Virtual screening.	41
	2.2.4. Development of target 6,7-dihydro-5 <i>H</i> -cyclopenta[<i>d</i>]pyrimidin	
	2.2.5. Evaluation of designed compounds using molecular techniques	modelling
	2.2.6. Synthesis of designed compounds	
	2.2.7. Biological evaluation	45
3.	Results and discussion	46
3	3.1. Molecular modelling	46
	3.1.1. Molecular docking of sorafenib	46
	3.1.2. 3D QSAR pharmacophore model generation	48
	3.1.3. Virtual screening	54
	3.1.4. Docking studies of virtually screened compounds	54
	3.1.5. Design results	62
	3.1.6. Validation of the designed scaffold of VEGFR2 inhibitors	64
3	3.2. Chemistry	77
	3.2.1. Synthetic schemes adopted to prepare the designed compounds	s:77
	3.2.2. Scheme 1	79
	3.2.3. Scheme 2	81
3	3.3. Biological evaluation	85
	3.3.1. In vitro VEGFR2 tyrosine kinase inhibitory activity	85
4.	Conclusion	88
5.	Experimental	89
4	5.1. Molecular modelling	
	5.1.1. Molecular docking	89
	5.1.2. 3D QSAR pharmacophore model generation and validation	90

الملخص العربي:	128
6. References	106
5.3.1. In vitro VEGFR2 tyrosine kinase activity	104
5.3. Biological evaluation	104
5.2.2. Synthesis	93
5.2.1. Materials and instrumentation	92
5.2. Chemistry	92
5.1.3. Virtual screening	90

List of figures

Figure 1. Multistep process of cancer development
Figure 2. Mechanism of action of different chemotherapeutic agents used in
treatment of cancer6
Figure 3. Protein kinase activation mechanisms through ligand-induced receptor
dimerization and tyrosine autophosphorylation
Figure 4. Protein kinases binding sites of ATP molecule
Figure 5. Protein kinase catalytic domain of VEGFR216
Figure 6. Binding interactions of the kinase domain of ABL117
Figure 7. Four types of kinase inhibitors.
Figure 8. (a) Chemical structure of CI-1040, an example of type III inhibitors.
(b) CI-1040 binds to an allosteric pocket adjacent to ATP binding site22
Figure 9. Representation of VEGFR
Figure 10. schematic illustration of binding of VEGF ligands to different
VEGFRs and their biological effect
Figure 11. The family of VEGFR and their inhibitors27
Figure 12. Illustration of essential structural features and binding interactions of
type II kinase inhibitors
Figure 13. Work flow for design of novel VEGFR2 inhibitors40
Figure 14. 3D image of hydrogen bonds formed between top hit 2r4b_GW7
(35) and VEGFR2
Figure 15. Illustration of the design strategy of the novel scaffold (VI)
according to the structure of the three top hits44
Figure 16. Molecular docking of sorafenib inside VEGFR2 with PDB code
2W7E

Figure 17. 3D image of the superimposition of the re-docked conformer of
sorafenib over the co-crystalized conformer (colored yellow)48
Figure 18. The library of T1-15 training set and S1-10 test set of known active
VEGFR2 inhibitors used for pharmacophore model generation along with their
IC ₅₀ values (μM)51
Figure 19. The best generated Pharmacophore model with three features51
Figure 20. Sorafenib as reference compound mapped into the best
pharmacophore model54
Figure 21. Illustration of design strategy of proposed scaffold (VI) based on
structure of top hit compound 2r4b_GW7 (35). 63
Figure 22. Illustration of binding of the proposed scaffold (VI) and sorafenib
(13) to the binding regions of VEGFR264
Figure 23. 2D image showing hydrogen bonds and hydrophobic interactions of
sorafenib and proposed derivatives (VIa-VIe) with the kinase domain of
VEGFR267
Figure 24. Mechanism of Thorpe-Ziegler cyclization reaction81
Figure 25. Assay of compounds (VIb) and (VIc) on VEGFR2 kinase activity.87

List of tables

Table 1. Tabular column illustrating the details of the ten hypotheses generated
using hypoGen algorithm52
Table 2. The experimental and predicted activity values of the training set
compounds according to hypothesis 1 along with their fit values53
Table 3. Docking score, hydrogen and hydrophobic interactions of sorafenib
and the three top hits with VEGFR2 (PDB code 3WZE), along with their
pharmacophore mapping and fit values
Table 4. Docking results of sorafenib (13) and the three top hits
Table 5. Docking score, hydrogen bonds and hydrophobic interactions of
sorafenib and the proposed derivatives with VEGFR2 (PDB code 3WZE), along
with their pharmacophore mapping and fit values68
Table 6. Docking results of sorafenib and the proposed derivatives (VIa-VIe) 71
Table 7. Percent inhibition of VEGFR2 enzymatic activity achieved by the
synthesized compounds at 10 µM85
Table 8. The IC ₅₀ value of synthesized compounds with high VEGFR2 percent
inhibition86

List of abbreviations

ABL1: Abelson murine leukemia viral oncogene homolog 1

Ala: Alanine **Asp:** Aspartate

ATP: adenosine 5'-triphosphate

Asp: Aspartate

BCR-ABL: fusion between Abelson tyrosine kinase gene and break point cluster gene

BTK: Bruton's tyrosine kinase **CADD:** Computer-aided drug design

c-FMS: Colony-stimulating factor-1 receptor

CHARMm: Chemistry at Harvard Macromolecular Mechanics **c-Kit:** v-kit (Hardy-Zuckerman 4 feline) sarcoma viral oncogene **c-SRC:** Cellular sarcoma (Schmidt-Ruppin A-2) viral oncogene

Cys: Cysteine

DCM: Dichloromethane

DFG: Aspartate- Phenylalanine- glycine **DIPEA:** N, N-Diisopropylethylamine

DMF: Dimethyl Formamide **DMSO:** Dimethyl sulphoxide **DNA:** Deoxyribonucleic acid

EGFR: Epidermal growth factor receptor

ESI-MS: Electrospray ionization mass spectroscopy

FAK: Focal adhesion kinase

FDA: Food and Drug Administration **FGFR**: fibroblast growth factor receptor

FLT-3: fms like tyrosine kinase 3 **FT-IR:** Fourier transform -Infrared

Glu: Glutamate **Gly:** Glycine

GTP: Guanosine 5'-Triphosphate **HBA:** Hydrogen bond acceptor **HBD:** Hydrogen bond donor

His: Histidine **Hrs:** Hours

HUVEC: Human umbilical vein endothelial cells

HYP: Hydrophobic

Hz: Hertz

IC₅₀: Half maximal inhibitory concentration

Ile: Isoleucine **Leu:** Leucine **Lys:** Lysine

MAPK: Mitogen Activated Protein Kinase **MEK:** mitogen-activated protein kinase

m.p: Melting pointMHz: Mega hertz

MS: Mass spectroscopy

NMR: Nuclear magnetic resonance **NRTK:** Non-receptor tyrosine kinase

PDB: Protein data bank **Pd-C:** Palladium on cardon

PDGFR: Platelet derived growth factor receptor

Phe: Phenyl alanine

PIGF: Placental growth factor

ppm: Part per million

3D QSAR: Three Dimensional Quantitative Structure-Activity Relationship

RA: Ring aromatic

Raf: v-raf murine sarcoma viral oncogene

Ras: Rat sarcoma

RET: Rearranged during transfection proto-oncogene

RMS: Root mean square

RMSD: Root mean square deviation

RNA: Ribonucleic acid **rt:** Room temperature

RTK: Receptor tyrosine kinase **SAR:** Structure activity relationship

TEA: Triethyl amine **THF:** Tetrahydrofuran

Tie-2: Tyrosine kinase with immunoglobulin-like and EGF-like domains 2

TLC: Thin layer chromatography

Tp53: Tumor protein 53

UV: Ultra violet Val: Valine

VEGF: Vascular endothelial growth factor

VEGFR: Vascular endothelial growth factor receptor

Abstract:

Title of thesis:

"Molecular Design and Synthesis of Small Organic Molecules as Anticancer Targeting Agents"

Name of candidate:

Mahitab Khaled Abdel Maksoud Sobhy

Teaching assistant of pharmaceutical chemistry Misr International University

Thesis supervised by:

Prof./ Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & Dean of the Faculty of Pharmacy
University of Sadat

Prof./ Nahla A. H. Farag

Professor of Pharmaceutical Chemistry & Head of Pharmaceutical Chemistry Department
Misr International University

Dr. / Deena S. M. Lasheen

Associate professor of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University Cancer is a collection of complex diseases. It begins when some of normal body cells start to divide and grow out of control, forming a mass or sheet of cells called tumor. It is a major cause of death throughout the world. According to the American Cancer Society, the number of deaths caused by cancer is second only to cardiovascular diseases. Although great strides have been made in the treatment of cancer over the past years, it continues to be a major health concern. Therefore, extensive efforts have been devoted to searching for new therapeutic approaches. The growth of new blood vessels (angiogenesis) is one of the well established hallmarks in the process of carcinogenesis. Vascular endothelial growth factor receptor 2 (VEGFR2) plays an essential role in cancer angiogenesis. Where, targeting VEGFR2 will inhibit angiogenesis causing tumor cell death.

In this study, a novel series of 6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidine derivatives was successfully designed and synthesized as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR2) inhibitory activity. The design of the novel scaffold was implemented via consecutive molecular modelling protocols; molecular docking, 3D QSAR pharmacophore model generation protocol and virtual screening, and was also focused on the exploration of the previously revealed SAR studies and bioisosteric modifications of lead compounds.

Designed compounds were then synthesized and their structures were confirmed through different spectral and microanalytical data.

The study involved the synthesis of the following unavailable reported intermediates:

- 1. 1-(4-Nitrophenyl)-3-phenylurea (**Ia**)
- 2. 1-(3-Choloro-4-methylphenyl)-3-(4-nitrophenyl)urea (**Ib**)
- 3. 1-(3-Trifluoromethyl-4-chlorophenyl)-3-(4-nitrophenyl)urea (**Ic**)

- 4. 1-(3-Methoxyphenyl)-3-(4-nitrophenyl)urea (**Id**)
- 5. 1-(4-Nitrophenyl)-3-(3-(trifluoromethyl)phenyl)urea (**Ie**)
- 6. 1-(4-Aminophenyl)-3-phenylurea (**IIa**)
- 7. 1-(4-Aminophenyl)-3-(3-choloro-4-methylphenyl)urea (**IIb**)
- 8. 1-(4-Aminophenyl)-3-(3-trifluoromethyl-4-chlorophenyl)urea (**IIc**)
- 9. 1-(4-Aminophenyl)-3-(3-methoxyphenyl)urea (**IId**)
- 10. 1-(4-Aminophenyl)-3-(3-(trifluoromethyl)phenyl)urea (**IIe**)
- 11. 2-Aminocyclopent-1-ene carbonitrile (III)
- 12. 4-Chloro-6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidine (**V**)
- 13. 6,7-Dihydro-3*H*-cyclopenta[*d*]pyrimidin-4(5*H*)-one (**IV**)

Furthermore, it has comprised the synthesis and characterization of the following new targeted compounds:

- 1. 1-(4-(6,7-Dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-ylamino)phenyl)-3-phenylurea (**VIa**)
- **2.** 1-(3-Chloro-4-methylphenyl)-3-(4-(6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-ylamino)phenyl)urea (**VIb**)
- 3. 1-(4-Chloro-3-(trifluoromethyl)phenyl)-3-(4-(6,7-dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-ylamino)phenyl)urea (**VIc**)
- 4. 1-(4-(6,7-Dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-ylamino)phenyl)-3-(3-methoxyphenyl)urea (**VId**)
- 5. 1-(4-(6,7-Dihydro-5*H*-cyclopenta[*d*]pyrimidin-4-ylamino)phenyl)-3-(3-(trifluoromethyl)phenyl)urea (**VIe**)

The biological evaluation was accomplished through testing of enzyme inhibition activity against VEGFR2 tyrosine kinase. The enzymatic assay was