PROGNOSTIC SIGNIFICANCE OF CD123 AND CD96 IN ADULT ACUTE MYELOID LEUKEMIA

THESIS

Submitted for Partial Fulfillment of

Master Degree in

Clinical Hematology

By

Minerva Muhammad Abd Elmonem
MB.B.Ch.

Supervised By

Professor Dr: Hany Mohamed Abdallah Hegab
Professor of Internal medicine & Hematology
Faculty of medicine- Ain Shams University
Associate Professor Dr: Rasha Ibrahim Ibrahim
Associate Professor of Internal medicine & Hematology
Faculty of medicine- Ain Shams University
Dr. Alyaa Mohamed Said
Lecturer of Internal medicine & Hematology
Faculty of medicine- Ain Shams University
Faculty of Medicine

2019

Ain Shams University

First, grace and foremost thanks to **Allah** for blessing this work until it has reached its end, as a part of his generous help throughout our life.

I would like to express my sincere gratitude and respect to **Prof. Hany**Mohamed Abdallah Hegab, Professor of Internal medicine & Hematology,

Faculty of medicine, Ain Shams University, for his continuous guidance,

supervision, kind encouragement, and support throughout the entire period of
the study.

It is my pleasure to express my unlimited appreciation and deepest thanks to **Prof. Rasha Ibrahim Ibrahim**, Associate Professor of Internal medicine & Hematology, Faculty of medicine, Ain Shams University, for her continuous supervision and great help throughout the whole work.

I wish to thank **Dr. Alyaa Mohamed Said**, Lecturer of Internal medicine & Hematology, Faculty of medicine, Ain Shams University, for her kind supervision and guidance throughout this study.

Minerva Muhammad Abd Elmonem

صدق الله العظيم (هود: ۸۸)

Abstract

Acute myeloid leukemia (AML) is considered to be a stem cell disease. The poor response to therapy in AML raises the expectations of the presence of leukemic stem cells (LSCs). Aim of work: To investigate the expression of CD96 and CD123 in adult patients with acute myeloid leukemia and their use as markers for prognosis. Methodology:Using muli-color flow-cytometry, we analyzed the expression of CD96 and CD123 among [CD34+/CD38-] cell population in AML patients. The study was conducted on 40 AML patients collected among cases referred to Adult Haematology and Oncology Department, Ain Shams University Hospitalsover the period from March 2017 to February 2018. Forty samples were studied at time of initial diagnosis and D28 of AML patients, compared to 16 bone marrow samples of patients with nonhematological malignancies as a control group. **Results:**It was found that **CD123** significantly percentage of was higher among [CD34+/CD38-]cells **AML** in cases at diagnosis and D28(means19.4% and 19.9% respectively)than the control group (mean:3.6%) and this difference shows a high statistical significance (P value < 0.001 in both). Also, the percentage of CD96+ cells was significantly higher among [CD34+/CD38-] cells in AML cases at diagnosis and D28 (means 22.5% and 26.6% respectively) than the control group(mean:2.5%) and this difference shows a high statistical significance(*P value < 0.001 in both*). CD96 exhibited negative correlation to both peripheral blood as well as bone marrow blast percentages either at diagnosis or on day 28 post-induction.AML with differentiation (M2,3,4,5) was predominant FAB type in CD96 and CD123 positive cases. CD96 expression on day 28 was positively

correlated to its expression on day 0 as well as to CD123 expression at diagnosis with P-values of <0.001 and 0.034 respectively.CD96 positive expressors at diagnosis exhibited shorter PFS as compared to negative expressors, and shorter median overall survival but neither differences culminated into statistical significance. **Conclusion:**CD96 and 123 may be used as markers for detection of leukemic stem cells and may be used as markers of prognosis in adult AML ,so targeting therapy for these two marker may carry hope for adult patient with AML.

Key words: Acute myeloid leukemia, leukemic stem cell, CD123, CD96.

Content

Title	Page
Introduction	1
Aim of the work	3
CHAPTER (1)	
Acute myeloid leukemia	4
Chapter 2	
Role of Hematopoietic and Leukemic Stem Cells in	
Leukemogenesis	35
Materials, Participants and Methods	61
CHAPTER V	
Results	70
Discussion	87
Summary	95
Conclusion	98
Recommendations	99
References	100

List of Tables

Table No.	Title	Page No.
1.	French-American-British (FAB) classification system	13
2.	Expression of cell surface and cytoplasmic markers for the diagnosis of acute leukemia	19
3.	Diagnosis of mixed phenotype acute leukemia* (MPAL)	19
4.	Pre-treatment cytogenetic and molecular entities shown to predict disease outcome in multivariable analysis studies conducted in younger adults	27
5.	Genetic abnormalities in cytogenetically normal CN-AML patients, and its clinical correlation	29
6.	Overview of leukemia/hematopoietic stem cell markers	46
7.	Age and sex of cases and control	70
8.	Different Demographic, Clinical data for patients	70
9.	Patient laboratory characteristics	71
10.	Percentages of different FAB subtypes in the AML study population	71
11.	Expression of different clusters of differentiation on the surface of myeloblasts in the study cohort	71
12.	Comparison between cases and controls regarding CD96 and CD123 expression at diagnosis and day 28	74
13.	Numbers and Percentages of cases as per their CD96 and CD123 expression status on day 0 and 28	75
14.	Comparison of the study participants in terms of age, sex and CD96 and CD123 expression status at diagnosis and on day 28	76
15.	Comparison of the study participants in terms of BM blasts %, CD96 and CD123 expression status at diagnosis and on day 28	77
16.	Comparison of the study participants in terms of cytogenetic risk strata, CD96 and CD123 expression status at diagnosis and on day 28	77

17.	Comparison of the study cohort in regards to the presence of extramedullary disease, CD96 and CD123 expression status	77
18.	Comparison of treatment outcome at day 28among patients in regards to their CD96 and CD123 expression status at diagnosis and on day 28	78
19.	Comparison of disease recurrence among patients in regards to their CD96 and CD123 expression status at diagnosis and on day 28	79
20.	Correlation of CD 123 and CD 96 with other quantitative patients' and disease related variables within cases only	79
21.	Comparison of FABsubtypes of AML among patients in regards to their CD96 and CD123 expression status at diagnosis and on day 28	81
22.	Comparison of progression-free survival (PFS) in relation to CD123 and CD96 expressions	81
23.	Relation between event-free survival and CD 123 or CD 96 at day 0 or day 28	82

List of Figures

Fig. No.	Title	Page No.
1.	Normal hematopoietic stem and progenitorcells	40
2.	Schematic illustration of the normal and leukemic human haematopoietic hierarchies	42
3.	Subunit structure of the high-affinity receptors for human IL-3, GM-CSF and IL-5	48
4.	Schematic structure of the CD96 antigen (Tactile).	57
5.	Kaplan-Meier curve comparing 1-year overall survival among positive and negative CD123expressors on day 0.	83
6.	Kaplan-Meier survival curve comparing 1-year overall survival positive and negative CD96expressorson day 0.	84
7.	Kaplan-Meier survival curve comparing overall survival among positive and negative CD123expressorson day 28	85
8.	Kaplan-Meier survival curve comparing overall survival among positive and negative CD96 expressors on day 28	86

List of Abbreviations

Af1q	All 1 fused gene from chromosome 1q
AKT	Protein kinase B
ALDH	Aldehyde dehydrogenase activity
ALL	Acute lymphoblastic leukemia
AML	Acute myeloid leukemia
AMMOL	Acute myelomonocytic leukemia
AMOL	Acute monoblastic leukemia
ANA	α naphthyl acetate
ANB	α naphthyl butyrate
ANC	Absolute neutrophilic count
APL	Acute promyelocytic leukemia
APL-V	Acute promyelocytic leukemia variant
ATO	arsenic trioxide
ATP	Adenosine-5'-triphosphate
ATRA	all-trans retinoic acid
BAALC	Brain and acute leukemia cytoplasmic
BCL-2	B-cell lymphoma 2
BCL-XL	B-cell lymphoma-extra- large
BCR-ABL	Breakpoint cluster region- Abelson
BM	Bone marrow
CAE	Chloroacetate esterase
CBF	Core binding factor complex
CD	Cluster of differentiation
СЕВРа	CCAAT/enhancer binding-protein alpha
C fos	FBJ Murine osteosarcoma
CFU	colony-forming units

CLL1	C-type lectin-like molecule-1
CLPED	cleft lip/palate ectodermal dysplasia syndrome
CML	chronic myelogenous leukemia
CNAML	cytogenetically normal AML
CNS	Central nervous system
CR	Complete remission
CRi	Complete remission with incomplete hematologic recovery
CRTAM	Class-I MHC-restricted T-cell-associated molecule
DIC	Disseminated intravascular coagulopathy
DNAM-1	CD226 DNAX accessory molecule-1
EDTA	Ethylenediaminetetraacetic acid
EMD	extramedullary disease
EPO	Erythropoietin
ERG1	Early growth response 1
ERK1	extracellular signal-regulated kinase 1
ERK2	extracellular signal-regulated kinase 2
EVI1	Ecotropic viral integration site 1
FAB	French-American-British
FDCP1	murine factor dependent hematopoietic cell line
FISH	Fluorescence in situ hybridization
FITC	Fluorescein isothiocyanate
FLT3	Fms-like tyrosine kinase-3
FLT3-ITD	Fms-like tyrosine kinase 3- Internal tandem duplications
GATA2	GATA binding protein 2
G-CSF	Granulocyte colony-stimulating factor
GM-CSF	Granulocyte macrophage colony-stimulating factor
GM-CSFR	Granulocyte-macrophage colony-stimulating factor receptor
GEP	gene expression profiling

Grb2	growth factor receptor-bound protein-2
GST	glutathione S-transferases
Hb	Hemoglobin
HiDAC	High dose cytarabine
HIF	hypoxia-inducible factors
HLA	Human leucocyte antigen
HSC	Hematopoietic stem cells
HSCT	Haematopoietic stem cell transfusion
HUVEC	human umbilical vein endothelial cells
IDH1	Isocitrate dehydrogenase 1
IKB	nuclear factor of kappa light polypeptide gene enhancer in B-
IKD	cells inhibitor
IL3	Inerleukin-3
IL5	Inerleukin-5
IL3R	Inerleukin-3 receptor
IL5R	Inerleukin-5 receptor
ITIM	immune-receptor tyrosine-based inhibitory motif
JNK	c-Jun amino-terminal kinases
KIT	v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene
IXI I	homolog gene
KMT2A	Lysine methyltransferase 2A
K-Ras	Kirsten rat sarcoma viral oncogene
LDH	Lactate dehydrogenase
LP	lumbar puncture
LSCs	leukemic stem cells
LTC-IC	long-term culture-initiating cells
M4 Eos	M4 with eosinophil
MAC 1	Membrane attack complex 1