

The Possible Role of High Resolution Computed Tomography Imaging (HRCT) in Predicting the Visibility and Position of the Round Window in Cochlear Implantation Surgery

Thesis

Submitted for Partial Fulfillment of Master Degree in **Otorhinolaryngology**

By

Nada Zakaria Zakaria El Sayad El Ablak
Under Supervision of

Prof. Dr. Samer Ahmed Ibrahim

Professor of Otorhinolaryngology Faculty of Medicine -Ain Shams University

Prof. Dr. Tamer Shoukry Sobhy

Professor of Otorhinolaryngology Faculty of Medicine - Ain Shams University

Ass.Prof.Togan Wafi Taha

Assistant Professor of Diagnostic Radiology Faculty of Medicine - Ain Shams University

Ass.Prof.Ihab Mohamed Nada

Assistant Professor of Otorhinolaryngology Faculty of Medicine - Misr University for Science and Technology

Faculty of Medicine -Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr. Samer Ahmed Ibrahim, Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Prof. Dr. Tamer Shoukry Sobhy, Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I am deeply thankful to Ass.Prof.Togan Wafi Taha, Assistant Professor of Diagnostic Radiology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Really I can hardly find the words to express my gratitude to Ass.Prof.lhab Mohamed Nada, Assistant Professor of Otorhinolaryngology, Faculty of Medicine, Misr University for Science and Technology, for his supervision, continuous help, encouragement throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Nada Zakaria Zakaria El Sayad El Ablak

List of Contents

Title	Page No.
List of Abbreviations	5
List of Tables	7
List of Figures	8
Introduction	1 -
Aim of the Work	18
Review of Literature	
 Anatomy and Physiology of Round Window 	19
■ Difficult Exposure of Round Membrane	29
Radiology in Cochlear Implantation	42
Patients and Methods	51
Results	60
Discussion	79
Conclusion and Recommendations	85
Summary	86
References	88
Arabic Summary	

List of Abbreviations

Abb.	Full term
BAEP	Brain Stem Auditory Evoked Potential
	Cochlear Aquiduct
	Combined Approach Technique
CI	
	Cerebro-Spinal Fluid
	Computed Tomography
FC	
<i>FN</i>	
GGSPN	Groove for Greater Superficial Petrosal
	Nerve
<i>GN</i>	Geniculate Ganglion
<i>GSP</i>	Greater Superficial Petrosal nerve
HRCT	High Resolution Computer Tomography
Hz	Hertz
<i>IAC</i>	Internal Auditory Canal
JN	Jacobson's Nerve
<i>KHz</i>	Kilo Hertz
LO	Labyrinthitis Ossificans
<i>LSC</i>	Lateral Semicircular Canal
MCF	Middle Cranial Fossa
mg	Milligram
<i>MPTA</i>	Mastoidectomy Posterior Tympanotomy
	Approach
<i>MRI</i>	Magnetic resonance imaging
OSL	Osseous Spiral Lamina
<i>OW.</i>	Oval Window
<i>PSSC</i>	Posterior Semicircular Canal
PTA	Pure tone Audiometry
<i>RW</i>	Round Window

List of Abbreviations cont...

Abb.	Full term
RWM	Round Window Membrane
	Round Window Niche
SD	Standard Deviation
<i>SNHL</i>	sensorineural hearing loss
<i>SPBT</i>	Superficial Part of Basal Turn
SSC	Superior Semicircular Canal
SSNHL	Sudden sensorineural hearing loss
	Scala Tympani
SV	Scala Vestibuli
<i>TM</i>	TympanoMastoidectomy
VA	Vestibular Aqueduct

List of Tables

Table. No.	Title	Page No.
Table (1):	Demographic characteristics of patients.	
Table (2):	Receiver-operating characteristic curve analysis for prediction of d	(ROC) ifficult
Table (3):	round window exposure using distant Receiver-operating characteristic curve analysis for prediction of distant round window exposure using angle	(ROC) ifficult
Table (4):	Comparison of distance (d) and angle patients with easy or difficult su	e (α) in urgical
Table (5):	exposure of round window	(ROC)
Table (6):	class III using angle (a)	(ROC)
Table (7):	class III using distance (d)	eαin IIa/IIb
Table (8):	and ST Thomas class III Receiver-operating characteristic curve analysis for discrimination be patients with ST Thomas class IIa/I	(ROC) etween
Table (9):	ST Thomas class I using angle (α) Receiver-operating characteristic curve analysis for discrimination be	75 (ROC)
Table (10):	patients with ST Thomas class IIa/I ST Thomas class I using distance (d) Comparison of distance d and angle	Ib and 77 e α in
	patients with ST Thomas class I a Thomas class IIa/IIb	

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Emeberiological of round window	19
Figure 2:	Physiology of round Window	22
Figure 3:	The hidden recess of the middle eright ear	
Figure 4:	The medial and lateral spaces of retrotympanum in Right ear	
Figure 5:	The position of the retrotympanic con	nplex26
Figure 6:	Microscopical anatomy of subiculum.	27
Figure 7:	Subcochlear canaliculus	28
Figure 8:	Saddle shape of round window mem (RWM), situated deep in round winiche (RWN)	indow
Figure 9:	Saddle shaped round window mem in A and ovoid in B	
Figure 10:	Dissection of medial wall of middle reveal different shapes of round Wine	
Figure 11:	a round window atresia, rightb round window atresia, left side	
Figure 12:	Grade I round window visibility w 50% of the RM membrane being visib	
Figure 13:	Grade II round window visibility 25% - 50% of the RM membrane visible	being
Figure 14:	Grade III round window visibility <25% i.e. only a glimpse of the membrane being visible	e RM

Fig. No.	Title	Page No.
Figure 15:	a. Grade IV round window visibility no RW membrane being visible Conventional bony cochleo performed with drilling for insert the electrode array	le. b: stomy ion of
Figure 16:	a in this subject an inflammatory obscured the round window membrac subjects with a hypertrophic to obscuring the round window niche	ane. b , egmen
Figure 17:	Tool shows the scala tympani	38
Figure 18:	Temporal high-resolution comtomography, showing a common anomaly in the left ear	cavity
Figure 19:	Temporal high-resolution com- tomography showing right side co- aplasia (thick white arrow) with no vestibule (thin white arrow)	chlear Iormal
Figure 20:	Temporal high-resolution com- tomography showing right side vest aplasia (thick black arrow) with a n- cochlea (black arrowhead)	ibular ormal
Figure 21:	Intraoperative photograph of co implant surgery of the right ear Type 1 fully visible round window (white arrow)	shows niche
Figure 22:	Intraoperative photograph of co implant surgery of the right ear Type 2 partially visible round w niche (white arrow)	shows indow

Fig. No.	Title	Page No.
Figure 23:	Intraoperative photograph of coordinate surgery of the right ear so Type 3 difficulty to visualize window (white arrow)	shows round
Figure 24:	Stenvers reformate LSCC	42
Figure 25:	Pre-operative high-resolution tembone CT scan illustrating bony over around round window	rhang
Figure 26:	Axial HRCT section showing O-shround window niche (RWN)	
Figure 27:	Axial HRCT section showing C-shround window niche (RWN)	
Figure 28:	Four consecutive axial cuts of resolution computer tomography temporal bone left side for round winiche assessment	y of indow
Figure 29:	Different patterns of ma	
Figure 30:	Sequential axial images from superinferior showing normal position of mastoid segment of facial N	of the
Figure 31:	Normal cochlea and otospong Normal cochlea on (A) axial CT oblique coronal MPR CT	(B)
Figure 32:	Axis of the basal turn of cochlea (da arrow) in relation to axis of ICA (solid arrow)	canal

Fig. No.	Title	Page No.
Figure 33:	(a) Oblique axial HRCT reconstring of the right ear shows incus malleus head. (b) Oblique coronal Hrconstructed image. (c) Oblique con HRCT reformatted image shows distance between the short processincus and the edge of tegmen of the window niche.	s and HRCT oronal the ss of round
Figure 34:	The vertical distance d between leading edge of the vertical section of facial nerve and the posterior wall external auditory canal	of the of the
Figure 35:	Intraoperative view: bony implant channel with bony over mastoidectomy	hang,
Figure 36:	Posterior tympanotomy shorelationship of the facial nerve=VII, tympani=CT, lateral semicing canal=LSCC	corda cular
Figure 37:	Receiver-operating characteristic (curve analysis for prediction of different round window exposure using distance	fficult
Figure 38:	Receiver-operating characteristic (curve analysis for prediction of different round window exposure using angle of	fficult
Figure 39:	Box plot illustrating the distributi distance d in the study population	
Figure 40:	Box plot illustrating the distributi angle α in the study population	

Fig. No.	Title Pag	e No.
Figure 41:	Pie chart illustrating the ST Thomas classification for round window exposure.	
Figure 42:	Receiver-operating characteristic (ROC) curve analysis for prediction of Thomas class III using angle (α)	8
Figure 43:	Receiver-operating characteristic (ROC) curve for prediction of ST Thomas class III using distance (d)	8
Figure 44:	Receiver-operating characteristic (ROC) curve for discrimination between patients with ST Thomas class IIa/IIb and ST Thomas class I using angle (α)	3
Figure 45:	Receiver-operating characteristic (ROC) curve for discrimination between patients with ST Thomas class IIa/IIb and ST Thomas class I using distance (d)	3
Figure 46:	Classification of the prediction line in the three RWM sections are shown	

ABSTRACT

Background: High-resolution computed tomography (HRCT) magnifies the role of preoperative imaging for detailed inner and middle ear anatomical information and enhances more efforts for better dependent correlation and measurements of round window (RW). Imaging is essential in the preoperative evaluation of sensorineural hearing loss (SNHL) patients who are candidates for CI. Surgeons need to be alert regarding the anomalies and pathologies that may represent a potential surgical hazard or that may that may require modification of the surgical approach.

Objectives: To study the possibility of preoperative assessment of round window in relation to the facial recess in order to anticipate the type of round window exposure before surgery by using High-resolution computed tomography (HRCT) scan.

Patients and Methods: This study included 50 children, aged 3 to 5 years who underwent unilateral cochlear implant with round window electrode insertion and had pre-operative highresolution temporal bone CT scan were included. All patients had severe to profound bilateral sensorineural hearing loss, which was unaidable with hearing aids.

Results: Our study showed that the α value of the angle between the line connecting the leading edge of the facial nerve to the midpoint of the round window and the median sagittal line measured in the preoperative CT scans was associated with the difficulty of intraoperatively exposing the round window membrane. When the α value was larger than a certain degree, the round window membrane was not easily exposed.

Conclusion: Successful cochlear implantation by posterior tympanotomy approach depends on conclusive identification of the RWN, which may be difficult in patients with limited RWN

visibility. Facial nerve canal in the facial recess may be obscuring the round window.

Keywords: High Resolution Computed Tomography Imaging, Round Window, Cochlear Implantation Surgery

