Predictive value of Malnutrition Universal Screening Tool (MUST) in Critically Ill Elderly Patients

Thesis

Submitted for Partial Fulfillment of MD in Geriatrics and Gerontology

 $\mathbf{B}\mathbf{y}$

Radwa Magdy Abd Elkader Salah

M.SC, Geriatric and Gerontology

Under Supervision of **Prof. Sarah Ahmed Hamza**

Professor of Geriatrics & Gerontology Faculty of Medicine, Ain Shams University

Dr. Reem Mohamed Sabry El Bedewy

Assistant professor of Geriatrics & Gerontology Faculty of Medicine, Ain Shams University

Dr. Hebattullah El Shazly Mohamed Zaki Elmedany

Lecturer of Geriatrics & Gerontology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University -2019-

بني لِنْهُ الْرَجْمِزَ الْحِيْمَ

روقل رَّبُ زِدْنیِ عِلماً ﴾

سورة طه الآيه رقم ١١٤

Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Sarah Ahmed Hamza**, Professor of Geriatric and Gerontology Medicine, faculty of medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Reem Mohamed Sabry El Bedewy**, Assistant Professor of Geriatric and Gerontology Medicine, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

Really I can hardly find the words to express my gratitude to **Dr. Hebattullah El Shazly Mohamed**, Lecturer of Geriatric and Gerontology Medicine, Faculty of Medicine, Ain Shams University, for her continuous directions and meticulous revision throughout the whole work. I really appreciate their patience and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Radwa Magdy Abd Elkader

Predictive value of Malnutrition Universal Screening Tool (MUST) in Critically Ill Elderly Patients Abstract:

Background: Globally, the elderly population is steadily growing because of continual improvement of the standards of living and medical technology. As the population ages the proportion elderly patients entering intensive care unit (ICU) is increasing. A recent large retrospective analysis found a yearly increase of 5.6% in very elderly ICU admission rates. Aim: To know predictive value of MUST in comparison to NUTRIC (Nutrition Risk in Critically III Score) score in critically ill elderly patients in Geriatric intensive care units. *Material and* method: Ninety patients were recruited from GICU of Ain Shams University Hospitals and followed up in a prospective study till death or discharge from GICU from October 2017 till June 2018 Results: In the current study it was found that the NUTRIC and modified NUTRIC scores are superior to MUST score in prediction of mortality and mechanical ventilation **Conclusion:** Based on discriminative abilities, the NUTRIC and modified NUTRIC scores are superior to MUST score in prediction of mortality and mechanical ventilation. The NUTRIC and Modified NUTRIC score may be helpful in guiding clinicians in providing adequate nutritional support for high risk group to reduce hospital malnutrition.

Keywords:

ICU admission; elderly; NUTRIC; MUST

List of Contents

Title	Page No.
List of Abbreviations	
List of Tables	
List of Figures	
Introduction	1
Aim of the work	5
Review of Literature	6
• Chapter 1: Aging and Malnutrition	6
• Chapter 2: Nutritional state assessme	ent21
Patients and methodology	39
Results	44
Discussion	62
Summary	70
Recommendations	72
Conclusion	73
References	74
Master sheet	92
Arabic summary	

List of Abbreviations

A.S.P.E.N.	American Society for Parenteral and Enteral Nutrition			
AD	Alzheimer's disease			
AND	Academy of Nutrition and Dietetics			
APACHE II	Acute Physiologic and Chronic Health Evaluation II			
BMI	Body mass index			
ССК	Cholecystokinin			
CHF	Congestive heart failure			
COPD	Chronic obstructive pulmonary disease			
CRF	Corticotropin releasing factor			
DETERMINE	Disease, Eating poorly, Tooth loss, Economic			
	hardship, Reduced social contact, Multiple			
	medications, Involuntary weight loss or gain, Need			
	for assistance and Elderly age			
EN	Enteral nutrition			
ESPEN	The European Society of Clinical Nutrition and			
	Metabolism			
FFQ	Food frequency questionnaire			
GERD	Gastroesophageal reflux disease			
GI	Gastrointestinal tract			
GICU	Geriatric intensive care unit			
GNRI	Geriatric Nutritional Risk Index			
Н	Height			
ICU	Intensive care unit			
IL	Interleukin			
KH	Knee height			
LOS	length of Hospital stay			
MNA	Mini Nutritional Assessment			
MNA-SF	Mini Nutritional Assessment-short form			
mRNA	Micro RNA			
mNUTRIC	Modified nutrition risk in critically ill score			
MST	Malnutrition Screening Tool			
MUST	Malnutrition Universal Screening Tool			
NPO	Nothing by mouth			
NRS 2002	Nutritional Risk Screening 2002			
NUTRIC	Nutrition Risk in Critically Ill Score			

PMR	Predicted mortality risk
SCREEN II	Seniors in the Community: Risk Evaluation for
	Eating and Nutrition
SD	Standard deviation
SGA	Subjective Global Assessment
SIRS	systemic inflammatory response syndrome
SNAQ	Short Nutritional Assessment Questionnaire
SOFA	Sequential organ failure assessment score
TNF-α	Tumor necrosis factor alpha
WHI	Waist-hip index
y	Year

LIST OF TABLES

Table	Title	Page.
(1)	Demographic characteristics of the studied cases	44
(2)	Clinical characteristics of the studied cases	44
(3)	Nutritional characteristics of the studied cases	45
(4)	Outcome characteristics of the studied cases	47
(5)	Comparison between NUTRIC grades regarding	48
	demographic and clinical characteristics	40
(6)	Comparison between NUTRIC grades regarding	
	nutritional and outcome characteristics and other	49
	tested nutrition tool grades	
(7)	Diagnostic performance of scales in prediction of	50
	NUTRIC high risk	30
(8)	Comparison between non-survivors, survivors	51
	regarding nutritional characteristics	<i>J</i> 1
(9)	Diagnostic performance of scales in prediction of	
	non-survivorship	53
(10)	Comparison between septic and non-septic cases	54
	regarding nutritional characteristics	
(11)	Diagnostic performance of scales in prediction of	56
	Sepsis	
(12)	Comparison between mechanical ventilation	
	conditions regarding nutritional characteristics	57
(4.5)		
(13)	Diagnostic performance of scales in prediction of	59
(4.6)	mechanical ventilation requirement	- *
(14)	Correlation between ICU stay duration and other	60
(4.5)	scales	
(15)	Linear regression analysis for ICU stay duration	61

LIST OF FIGURES

Fig.	Title	Page
(1)	Nutritional status (NUTRIC) of the studied cases	46
(2)	Outcome characteristics of the studied cases	47
(3)	ROC curve for scales in prediction of NUTRIC high risk	50
(4)	Comparison between non-survivors and survivors regarding nutritional scales	52
(5)	ROC curve for scales in prediction of non- survivorship	53
(6)	Comparison between septic and non-septic cases regarding nutritional scales	55
(7)	ROC curve for scales in prediction of sepsis	56
(8)	Comparison between mechanically ventilated and non-mechanically ventilated cases regarding nutritional scales	58
(9)	ROC curve for scales in prediction of mechanical ventilation requirement	59

Globally, the elderly population is steadily growing with the increased average life span due to continual improvement of the standards of living and the development of medical technology (*Kevin and David*, 2005). As the population ages the proportion of very elderly intensive care unit (ICU) patients is increasing (*Dreiher et al.*, 2012). A large retrospective analysis found a yearly increase of 5.6% in very elderly ICU admission rates (*Bagshaw et al.*, 2009).

The elderly population represents a vulnerable group at risk of nutritional deficiencies, because aging is associated with physical and physiological impairment and psychosocial as well as economical difficulty, all of which can all play a role in nutritional inadequacy (*Ahmed and Haboubi*, 2010).

Malnutrition may refer to both deficiencies (such as protein, calorie, vitamin, mineral, etc.) and excesses (e.g., obesity and hyper vitaminosis). Malnutrition appears when there is mismatch between intake and demand of aging body (*Reuben*, 2007).

The prevalence of nutritional risk has been described as up to 80% when screening for protein-energy malnutrition among elderly hospitalized patients. The number varies depending on population and setting (*Ruxton et al.*, 2008). Elderly patients admitted to the ICU are an exceptionally vulnerable patient population. Often

these patients have several conditions that impede oral intake and impair nutritional status. When coupled with an acute disease process, it is likely that elderly patients requiring ICU admission are at exceptional risk for nutritional decline; however, there is a paucity of data that has specifically explored the prevalence of malnutrition in this particular population (*Covinsky et al.*, 2002).

Malnutrition is an important predictor of morbidity and mortality, and has been associated with increased risk of complications, prolonged hospital stays and readmission rate, and hence, increase medical costs. The identification and treatment of malnutrition earlier can lead to improved outcomes and better quality of life (*Ahmed and Haboubi*, 2010).

Therefore, the development of appropriate tools to assess the degree of malnutrition in patients is essential. Therefore, hospitals should screen each patient's nutritional status to identify malnutrition upon admission to the hospital, and try to manage nutritional problems to improve outcomes and better quality of life. To accomplish this, hospitals employ nutritional screening or assessment tools. An effective nutritional screening tool must be practical and needs to be quick and simple and accurately identify patients with possible malnutrition to allow the efficient targeting of resources for nutritional assessment (*Elia and Stratton*, 2012).

A number of tools employing a variety of criteria are used to identify nutrition risk, including clinical diagnosis,

laboratory data, physical examination, anthropometric data, food/nutrient intake, and functional assessment. These indicators were primarily validated in outpatients or a general hospitalized population; they were not specifically designed for use in the ICU (*Van Bokhorst et al.*, 2014).

Heyland et al., previously proposed a novel scoring tool, the nutrition risk in critically ill (NUTRIC) score, which is the first nutritional risk assessment tool developed and validated specifically for ICU patients. The final composite score accurately identified those patients who had higher mortality rates or survivors with longer lengths of stay. In addition, there was an interaction between mortality, nutritional intake and NUTRIC score suggesting that those with higher NUTRIC scores (6 or more) benefited the most from increasing nutritional intake (*Heyland et al.*, 2011).

Interleukin 6 acts as a pro inflammatory cytokine and anti-inflammatory myokine. It stimulates the inflammatory and autoimmune processes in many diseases such as diabetes, atherosclerosis, depression, rheumatoid arthritis and Alzheimer's disease (*Dowati et al.*, 2010; *Swardfager et al.*, 2010).

The NUTRIC score is easy to calculate as it contains variables that are mostly easy to obtain in the critical care setting, with the exception of IL-6 levels which is not commonly measured. In practice, many units are using the NUTRIC score without the IL-6 level (modified NUTRIC score) (*Labarere*, 2014; *Heyland et al.*, 2011).

Malnutrition universal screening tool (MUST) is another nutrition risk screening tool that does not involve invasive procedures. It was developed by the Multidisciplinary Malnutrition Advisory Group of the British Association for Parenteral & Enteral Nutrition (BAPEN) of the United Kingdom for adults under all healthcare settings and patient groups (Stratton et al., 2006). It is particularly sensitive for recognition of protein energy under nutrition in hospitalized patients. MUST is a five step screening tool to identify adults who are malnourished, at risk of malnutrition, under nutrition or obese. It also includes management guidelines which can be used to develop a care plan. It is for use in hospitals, community, care homes and other care settings. It is a short tool, less time consuming and can be used by all care workers (Scott, *2008*).

Therefore, the purpose of the present study was to know predictive value of MUST in comparison with NUTRIC score in critically ill elderly patients in ICU because it is a short tool, less time consuming, more practical and can be used by all care workers.

Aim of the work

To know predictive value of MUST in comparison to NUTRIC score in critically ill elderly patients in Geriatric intensive care units.

Aging and Malnutrition

Globally, the elderly population is steadily growing. Improvement of life span is attributed to improvement of the standards of living and medical technology (*Kevin and David*, 2005).

Over the previous decades, the importance of nutritional status in the elderly population has increasingly been recognized in different morbid conditions such as cancer, heart disease, and dementia (*Ministry of Home Affairs*, 2010). Besides, Elderly patients admitted to the intensive care unit (ICU) are an incredibly vulnerable patient population. These patients often have many conditions that impede oral intake and impair nutritional status. When combined with an acute disease process, it is likely that elderly patients requiring ICU admission are at risk for nutritional decline (*Sheean et al.*, 2010.)

Definition of malnutrition:

In general, there is no clear definition or gold identifying standard method for under nutrition (Cederholm et al., 2015). Moreover, the terms 'under 'malnutrition' nutrition' and frequently are used interchangeably in relevant literature, although malnutrition includes both under nutrition and over nutrition imbalances (Meijers et al., 2013).