

Synthesis, physicochemical studies and molecular modeling of metal complexes of some hydrazones derived from 2-amino-3-formylchromone

A Thesis Submitted
By
Shery Anwar Fahmy Ibrahim

B.Sc. & Ed. 2007
M.Sc. 2014

For The Degree of Doctor of Philosophy
For the Teacher's Preparation
In Science
(Inorganic Chemistry)

Supervisors

Prof. Dr. Ali Mahmoud Taha
Prof. Dr. Magdy Ahmed Mohamed Ibrahim
Dr. Omima Mohamed Ibrahim

To
Department of Chemistry
Faculty of Education
Ain Shams University
Cairo -2019

Synthesis, physicochemical studies and molecular modeling of metal complexes of some hydrazones derived from 2-amino-3-formylchromone

By

Shery Anwar Fahmy Ibrahim

B.Sc. & Ed. (2007) M.Sc. (2014)

Under the supervision of

1- Prof. Dr. Ali Mahmoud Taha

Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

2- Prof. Dr. Magdy Ahmed Mohamed Ibrahim

Prof. of Organic Chemistry, Faculty of Education, Ain Shams University.

3- Dr. Omima Mohamed Ibrahim Adly

Ass. Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Approval Sheet

"Synthesis, physicochemical studies and molecular modeling of metal complexes of some hydrazones derived from 2-amino-3formylchromone"

Supervisors	Signature
Prof. Dr. Ali Mahmoud Ta	ha
Prof. of Inorganic Chemistry, Faculty of I	Education, Ain Shams University.
Prof. Dr. Magdy Ahmed M	ohamed
Prof. of Organic Chemistry, Faculty of Ed	lucation, Ain Shams University.
Dr. Omima Mohamed Ibr	ahim
Assistant Prof. of Inorganic Chemistry University.	, Faculty of Education, Ain Shams
Head of Chemist	ry Department
Prof. Dr. Mohamed	Abass Mohamed
•••••	•••••
Higher studies:	
The thesis was approved	Approval date / / 2019
Approved by Council of Faculty	Approved by Council of
University Date / / 2019	Date / /2019

Acknowledgement

First of all, thanks to <u>GOD</u>, for helping me to accomplish this thesis.

I would like to express deep thanks and gratitude to my professors for their continuous and valuable helping in interpretation of the results and lay out of this thesis:

Prof. Dr. Ali Mahmoud Taha; Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University.

Prof. Dr. Magdy Ahmed Mohamed; Prof. of Organic Chemistry, Faculty of Education, Ain Shams University.

Dr. Omima Mohamed Ibrahim; Assistant Prof. of Inorganic Chemistry, Faculty of Education, Ain Shams University

Many thanks to Prof. Dr. Mohamed Abass Mohamed; Head of the Department of Chemistry, Faculty of Education, Ain Shams University. Also, Many thanks to Prof. Dr. Mahmoud Mohamed Mashaly and Prof. Dr. Ali Mahmoud Taha; the previous Head of the Department of Chemistry, Faculty of Education, Ain Shams

Shery Anwar Fahmy Ibrahim

List of Schemes	i
List of Tables	iii
List of Figures	viii
List of diagrams	xiv
List of abbreviations	xv
Abstract	xviii
Aim of the work	XX
Chapter I	
INTRODUCTION	
(Metal complexes with chromone derivatives)	
1.1. Complexes derived from 3-formylchromones	2
1.2. Complexes derived from Schiff bases and hydrazones	
of 3-formylchromne.	10
Chapter II	
EXPERIMENTAL AND THEORTICAL BACKGROUND	
(2.1) Materials	46
(2.2) Preparation of organic compounds	46
(2.2.1) Preparation of chromone-3-carboxaldehyde	47
(2.2.2) Preparation of chromone-3-carboxaldehyd-oxime	47
(2.2.3) Preparation of 2-aminochromone-3-carboxaldehyde	47
(2.2.4) Synthesis of hydrazone ligands	48
(2.2.4.1) 2-[(2-Aminochromon-3-yl)methylidene]hydrazinecarboxamide	
(ACMHC, HL _a)	48
(2.2.4.2) 2-[(2-Aminochromon-3-yl)methylidene]-N-phenylhydrazine	
carbothioamide (ACMPHC, HL _b)	48
(2.3) Synthesis of conner(II)-hydrazone complexes	50

(2.3.1) General Procedure	50
$(2.3.1.1)$ Synthesis of binary $[(L_a)Cu(NO_3)].H_2O$ complex (2)	50
(2.3.1.2) Synthesis of ternary [(La)Cu(8-HQ)(CH ₃ OH)](NO ₃), complex (7)	51
(2.4) Analytical Determinations and Characterizations	51
(2.4.1) Apparatus and Instruments	51
(2.4.2) Mass Spectroscopy	52
(2.4.3) Electron Paramagnetic Resonance Spectra	53
(2.4.4) Experimental Calculation of Excited State Dipole Moments	54
(2.4.5) Magnetic Susceptibility Measurements	57
(2.4.6) Thermal Analysis	57
(2.4.7) Quantitative Analyses of the Metal Cations	58
(2.4.7.1) Determination of Cu(II) ion	58
(2.5) Antimicrobial Activity	59
(2.5.1) Preparation of tested compound	59
(2.5.2) Testing for anti-bacterial and yeasts activity	59
(2.5.3) Testing for anti-fungal activity	60
(2.5.4) Standard references	60
(2.6) Theoretical Background of Molecular Modeling	60
(2.6.1) Quantum mechanics	61
(2.6.2) Molecular orbital (MO) theory	61
(2.6.3) Abinitio calculations	61
(2.6.4) Chemical accuracy	62
(2.6.5) Electronic energies and heats of formation	62
(2.6.6) Frontier orbitals and chemical reactivity	63
(2.6.7) The electron density	64
(2.6.8) Basic concepts	64
(2.6.9) Basis sets	64
(2.6.9.1) Split valence basis sets	65
(2.6.9.2) Polarized basis sets	66

(2.6.9.3) Diffuse basis sets	66
(2.6.9.4) Common basis sets	
Chapter III	
RESULTS AND DISCUSSION	
Abstract	67
Introduction	68
Aim of this chapter	68
Results and discussion	70
(A) IR Spectra of the Prepared Ligands	71
(B) Mass Spectra of the Prepared Ligands	72
(C) ¹ H-NMR Spectra of the Prepared Compounds	74
(D) ¹³ C-NMR Spectra of the Prepared Compounds	75
(E) Electronic Spectra of ACC and its Hydrazones HL_a and HL_b	76
(F) Emission Spectra	77
(G) Solvent Effects on the Emission Spectra	83
i- Non-specific Interactions.	86
ii- Specific interactions	86
(H) Estimation of ground and excited state dipole moments	94
(I) Computational method	
(J) Frontier Molecular Orbital Analysis (FMO)	98
(K) Global chemical reactivity descriptors (GCRD)	
Conclusion	103
Chapter IV	
Abstract	136
Aim of this chapter	137
Results and discussion	137
(A) IR Spectra	138
(B) Conductivity measurements	141

(C) Electronic spectra and magnetic measurements	141
(D) Electron paramagnetic resonance spectra (EPR)	
(E) Thermal analysis	144
(F) Mass spectra	146
(G) Fluorescence spectra	153
Estimation of ground state and excited state dipole moments	158
(H) Antimicrobial studies	160
(I) Molecular modeling	163
Frontier Molecular Orbital Analysis (FMO)	163
(J) Conclusion	166
Chapter V	
Abstract	201
Aim of this chapter	202
Results and discussion	203
(A) IR Spectra	203
(B) Conductivity measurements	208
(C) Electronic spectra and magnetic measurements	208
(D) Fluorescence spectra	210
(E) Mass spectra	214
(F) Thermal analysis	214
(G) Molecular orbital calculations	217
HOMO – LUMO Analysis	217
Molecular modeling and biological activity	219
(H) Antimicrobial Studies	221
(I) Conclusions	222
References	255
English Summary	268

List of Schemes

Scheme No.	Title	Page
Scheme 2.1	The synthetic pathway for the hydrazones (HL_a and HL_b) ligands.	49
Scheme 2.2	Tautomeric forms of the HL _a ligand.	49
Scheme 2.3	Tautomeric forms of the HL _b ligand.	50
Scheme 3.1	Structural formula of ACC, ACMHCA (HL_a) and ACMNPHTCA (HL_b).	69
Scheme 3.2	Tautomeric structures of ACC.	70
Scheme 3.3	Tautomeric structures of HL _a .	70
Scheme 3.4	Tautomeric structures of HL _b .	70
Scheme 3.5	Mass fragmentation patterns of the HL _a ligand.	73
Scheme 3.6	Mass fragmentation patterns of the HL _b ligand.	74
Scheme 3.7	Resonance effect of electron-accepting of ACC, HL_a and HL_b .	92
Scheme 4.1	Mass fragmentation patterns of complex 2.	134
Scheme 4.2	Mass fragmentation patterns of complex 5.	135
Scheme 4.3	Mass fragmentation patterns of complex 6 .	136

i

Scheme No.	Title	Page
Scheme 4.4	Mass fragmentation patterns of complex 8.	137
Scheme 4.5	Representative structures of the Cu(II) complexes 1-8 .	147
Scheme 5.1	The possible tautomeric structures of Cu(II) complex.	205
Scheme 5.2	Representative structures of the Cu(II) complexes 9-16.	216

List of Tables

Table No.	Title	Page
Table 3.1	Physical and analytical data of the hydrazones, HL _a	105
	and HL_b organic compounds.	105
Table 3.2	Characteristic infrared frequencies (cm ⁻¹) of ACC	
	and the hydrazones, $\mathbf{HL_a}$ and $\mathbf{HL_b}$ organic	106
	compounds.	
Table 3.3	The ¹ H-NMR chemical shifts (ppm) of ACC and	
	hydrazones $\mathbf{HL_a}$ and $\mathbf{HL_{b,}}$ ligands and their	107
	assignments.	
Table 3.4	The ¹³ C-NMR chemical shifts (ppm) of the	
	hydrazones, $\mathbf{HL_a}$ and $\mathbf{HL_{b}}$, ligands and their	108
	assignments.	
Table 3.5	Solvent parameters: ε (dielectric constant), n	
	(reactive index), E_T^N (normalized Reicharedt	109
T-1-1-2-6	constant and their $f(\varepsilon,n)$ functions	
Table 3.6	Excitation, emission wavelength bands, extinction	
	coefficient and quantum yield of 2-aminochromone-	110
	3-carboxyaldhyde (ACC) and its hydrazones HL _a	
T-1-1- 2.7	and HL _b in different solvents at room temperature.	
Table 3.7	Solvatochromic data of ACC and its hydrazones HL _a	112
	and $\mathbf{HL_b}$ ligands.	112
Table 3.8	Linear regression analysis of stokes shift <i>versus</i>	
	solvent parameters of ACC and its hydrazones HL _a	112
	and HL_b compounds.	113
Table 3.9	The slope (m), Intercept (C), Correlation coefficient	
	(r) and noumber of data points (n) corresponding to	116
	statistical treatment of spectral shifts.	

iii