EVALUATION OF A COOLING SYSTEM FOR GREENHOUSE

By

AMINA AHMED MOHAMED SOLIMAN

B.Sc. Agric. Sc. (Agricultural Engineering), Faculty of Agriculture, Ain Shams University, 2012

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

MASTER OF SCIENCE
in
Agricultural Sciences
(On Farm Machineryand Power Engineering)

Department of Agricultural Engineering
Faculty of Agriculture
Ain Shams University

Approval Sheet

EVALUATION OF A COOLING SYSTEM FOR GREENHOUSE

By

AMINA AHMED MOHAMED SOLIMAN

B.Sc. Agric. Sc. (Agricultural Engineering), Faculty of Agriculture, Ain Shams University, 2012

This thesis for M.Sc. degree has been approved by:
Dr. Ahmed TaherEmbaby
Prof.Emeritus of Agricultural Engineering, Faculty of Agricultura
FayomUniversity
Dr.Zeinab Hussein Behariy
Prof. Emeritus of Pomolog, Faculty of Agriculture, Ain Sham
University
Dr. MoustafaFaheem Mohammed Abdel-Salam
Associate Prof.ofAgricultural Engineering, Faculty of Agriculture
Ain Shams University
Dr. Mubarak Mohammed Mostafa
Prof. Emeritus of Agricultural Engineering, Faculty of Agriculture
Ain Shams University

Date of Examination: 29 /10 / 2019

EVALUATION OF A COOLING SYSTEM FOR GREENHOUSE

By

AMINA AHMED MOHAMED SOLIMAN

B.Sc. Agric. Sc. (Agricultural Engineering), Faculty of Agriculture, Ain Shams University, 2012

Under the supervision of:

Dr. Mubarak Mohammed Mostafa

Prof. Emeritus of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University. (Principle Supervisor)

Dr. Moustafa Faheem Mohammed Abdel-Salam

Associate Prof. of Agricultural Engineering, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Mohammed Kassem

Head Researches Emeritus of Agricultural Engineering, Agricultural Engineering Research Institute, Agricultural Research Center.

ABSTRACT

Amina Ahmed Mohamed Soliman: Evaluation of A Cooling System for Greenhouse. Unpublished M.Sc. thesis, Department of Agricultural Engineering, Faculty of Agriculture, Ain Shams University, 2019.

This research aims to study the effect of using the cooling and ventilation system on the production and quality of lettuce and mint crops in autumn and winter season. Two poly-greenhouse models were constructed at the Agricultural Engineering Research Institute (AEnRI), Al-Giza Governorate, Egypt (Latitude of 30.02° and longitude of 31.13°). One of them was equipped with photovoltaic (pv) system to feed electrical load of greenhouse as cooling and ventilation control system (treatment) to control, the maximum and minimum temperature to control the interior climate and the other was a traditional greenhouse (control). The plants were planted in a greenhouse under an hydropinic system. Results of the experimental work shows that the specific approach of cooling and mechanical ventilation for lettuce and mint crop production enhances the rate of growth and increasing the fresh lettuce and mint yield by 52.88% and 49.91%, respectively comparing with control greenhouse.

Key words: Greenhouse, Evaporative cooling, Fan and pad cooling, Ventilation, Relative humidity, PV system, NFT system, crops lettuce and mint.

ACKNOWLEDGEMENT

Thanks to Allah for his gracious kindness in all the endeavors the author has taken up in her life.

I would like to express my deep appreciation and gratitude to **Prof. Dr. Mubarak Mohammed Mostafa**, Prof. Emer. of Agric. Eng., Fac. Agric., Ain Shams Univ. for suggesting the problem of study and for his kind supervision throughout this work. The author is grateful for his valuable discussions, which helped to finalize this work.

The author wishes to express her sincere gratitude and appreciation to **Dr. Mostafa Fahim Mohammed Abdel-Salam**, Associate Prof. of Agric. Eng., Fac. Agric., Ain Shams Univ., for kind supervision, continuous encouragement and valuable advices throughout this work.

The author wishes to express her sincere gratitude and appreciation to **Dr. Ahmed Mohmed Kassem**, Head Res. Emer. of , Agric. Eng. Res. Inst, Agricultural Research Center., for supervision, problem suggestion, continuous encouragement and valuable advices throughout this work, kind help and for reviewing the manuscript.

Special thanks to all staff members of the Agric. Eng. Dep., Fac. of Agric., Ain Shams Univ., for their kind help.

Finally, my full respect and deep thanks to my family for their tender care, help, patience, loving encouragement and moral support.

To Soul of **Prof. Dr. Mahmoud Ahmed El-Nono**.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURES	3
2.1. Introduction about greenhouses	3
2.2. Location of greenhouse	5
2.3. Greenhouse orientation and shape	7
2.4. Greenhouse shading	8
2.5. Greenhouse structure materials	10
2.6. Greenhouse covering materials	11
2.7. Greenhouse cooling	12
2.7.1. Cooling system utilizes	12
2.7.2. Cooling systems	14
2.8. The ventilation	16
2.8.1. Why ventilation	16
2.8.2. Ventilation methods	17
2.8.2.1 Natural ventilation	17
2.8.2.2. Forced-air ventilation	19
2.8.3. Rates of ventilation	21
2.8.4. Size the exhaust fan	21
2.9. Humidity control	22
2.10. Solar energy	24
2.11. Solar panel system	25
2.12. Hydroponic	27
2.12.1. Hydroponic definition	27
2.12.2 Nutrient Film Technique (NFT)	29
2.12.3. pH Level	30
2.12. 4. Electrical conductivity (EC)	30
3. MATERIALS AND METHODS	32

3.1. Description of the greenhouses	32
3.1.1. Cooling pad	34
3.1.2. Pump and sump	35
3.1.3 Ventilation fan	35
3.1.4. Sizing the evaporative cooling system	35
3.2. Description of the NFT system	39
3.2.1. Hydroponic unit	39
3.2.2. The pump unit	40
3.2.3. Plastic cups	40
3.2.4. Plant material	40
3.2.5. Growth media.	40
3.2.6. Nutrient solution	40
3.2.7. Deep water culture	41
3.3. Description of the solar PV system	43
3.3.1. Solar cell modules	43
3.3.2. Charge controller (Regulator)	44
3.3.3. Battery	44
3.3.4. Inverter	44
3.4. INSTRUMENTATIONS	45
3.4.1. Thermocouples	45
3.4.2. Electrical thermostat	45
3.4.3. Air velocity	45
3.4.4. Analog cup anaometer	45
3.4.5. Analog PH meter	45
3.4.6. Conductivity meter	46
3.4.7. digital multi meter	46
3.5. Heat losses from the greenhouse	48
3.5.1. Heat flow through the polyethylene	48
3.5.2. Energy loss via ventilation	48
3.6. Total losses	49
3.7. Reducing of Air temperatures by evaporative cooling.	49
3.7.1. Evaporative cooling efficiency	50

3.8. Mechanical ventilation	50
3.8.1. Determining ventilation volume rate	50
3.8.2. Size of the intake vent	50
3.9. Natural ventilation	51
3.10. Water consumption	51
3.10.1. Water use efficiency (WUE)	51
3.11. Methodology used in the determination of the power	
and efficiency of the system	51
3.11.1.The Input power	51
3.11.2. PV Array output	52
3.11.3. Array efficiency	52
3.12. Cost analysis	52
4. RESULTS AND DISCUSSION	54
4.1. Hourly variation of temperatures	54
4.2. Relative humidity	56
4.3. Effect of cooling on stem length production of lettuce	
and mint	58
4.4. Effect of cooling on length of total root for lettuce and	
mint	59
4.5. The cooling water consumption effective on lettuce	
and mint	60
4.6. Effect of cooling system on nutrient solution	
consumption on lettuce and mint	61
4.7. Cooling system effective on the average production	
for lettuce and mint	62
4.8. Cooling efficiency	63
4.9. Heat losses through the greenhouse	63
4.10. Solar radiation	64
4.11. Input power	65
4.12. PV array output	66
4.12.1.Generated electric power	66
4.13. Cost analysis	68

5. SUMMARY AND CONCULUSIONS	69
6. REFERENCES	73
ARARIC SUMMARY	

LIST OF TABLES

Table	le	
No.		Page
1	Basic photovoltaic module data	43
2	Photovoltaic module electrical data(STC)	43
3	Photovoltaic module electrical data(NOCT)	44

LIST OF FIGURES

Figure		Daga
No.		Page
1	Select location carefully	6
2	ventilation importance	19
3	types of forced ventilation.	20
4	The experimental greenhouse	33
5	Schematic diagram showing the basic dimensions	
	and component of the constructed greenhouse	34
6	Cooling system components (a)	38
7	Cooling system components (b)	39
8	NFT system hydroponic unit(a)	41
9	NFT system hydroponic unit(b)	42
10	Submersible pump	42
11	Plastic cups	42
12	Growth media	42
13	Solar cell system(a)	44
14	Solar cell system(b)	45
15	Data logger	46
16	Thermostats	46
17	Air velocity and relative humidity	46
18	Ph meter	47
19	Ec meter	47
20	Digital multi meter	47
21	Sensitive balance	46
22	Average air temperatures outside and inside the	
	treatment and control greenhouses vs. time during	
	autumn season	54
23	Average air temperatures outside and inside the	
	treatment and control greenhouses vs. time during	

Figure		Dogo
No.		Page
	winter season	55
24	Average air temperatures between beside pad at	
	center and at exist treatment greenhouses vs. time	55
25	Average air relative humidity outside and inside the	
	treatment and control greenhouses vs. time	56
26	Average air relative humidity outside and inside the	
	treatment and control greenhouses vs. time	57
27	Average air relative humidity between beside pad,	
	at center and at exist treatment greenhouse	
	vs. time	57
28	Development plants through growth stage for	
	lettuce and mint during autumn season	58
29	Development plants through growth stage for	
	lettuce and mint during winter season	58
30	Average length of total roots through growth stage	
	for lettuce and mint during autumn season	59
31	Average length of total roots through growth stage	
	for lettuce and mint during winter season	59
32	Water consumptive use for lettuce through growth	
	stage during autumn season	60
33	Water consumptive use for lettuce through growth	
	stage during winter season	60
34	Nutrient solution consumptive use for mint through	
	growth stage during autumn season	61
35	Nutrient solution consumptive use for mint through	
	growth stage during winter season	61
36	Average production per plant of the treatment and	
	control greenhouses at the end of growing during	
	autumn season for lettuce and mint	62
37	Average production per plant of the treatment and	62

VIII

Figure		Dogo
No.		Page
	control greenhouses at the end of growing during	
	winter season for lettuce and mint	
38	Relationship between day time and cooling	
	efficiency	63
39	Heat loss through the greenhouse during autumn	
	and winter seasons	64
40	Average solar radiation of daily hourly between	
	inside and outside greenhouse during	
	autumn and winter seasons.	65
41	Average input power to the system(W/day) during	
	autumn and winter season	65
42	Average PVarray output power(W)of daily hourly	
	during autumn season	66
43	Average PVarray output power(W)of daily hourly	
	during winter season	66
44	Daily measured output power as a function of	
	average solar radiation intensity during autumn	
	season	67
45	Daily measured output power as a function of	
	average solar radiation intensity during winter	
	season	67

INTRODUCTION

The greenhouse techniques are considered among the most important solutions of agriculture intensification. Due to the huge increase of Egyption population and its limited agricultural area, verticalexpansion of agricultural production is necessary. The main purpose of a greenhouse is to improve the environmental conditions in which plants are grown. Greenhouses are usually equipped with some environmental modification devices such as cooling, ventilation and heating systems. Ventilation can remove excess heat, increase air mixing, and reduce temperature stratification in the greenhouse (Kumar., et al 2009). During autumn, in Egypt, ventilation alone is not enough to maintain optimum interior temperature. Therefore, water evaporative cooling systems and fans are usually used to reduce the interior air temperature to an acceptable level. The cooling of these systems is commonly accomplished by using an electrically driven fan, pad (Marcel., et al 2006). The function of the fan and pad is to prevent greenhouse overheating and cool the plants during hot weather. Whereas, the function of the shading technique is to reduce the amount of solar thermal radiation and penetrates only the sunlight that is necessary for growing of plants. Therefore, to electrify the previously mentioned cooling equipment's that are used in remote area greenhouses it is necessary to use a well-designed stand-alone photovoltaic (PV) system. The main objective of this research is to introduce a proposed greenhouse cooling system, which uses a standalone PV system to feed the electrical load of the greenhouse. At the same time, it introduces the complete sizing procedure of the greenhouse PV system. This will enable Egypt to face the increase in foods, in addition to increase the yield product per unit area of land.

Generally, Climate control is of great importance for greenhouse production in order to achieve high yield and good quality crops that meet the demands of consumers, as well as for economical production. Temperature and relative humidity (RH) are two basic climatic

parameters usually controlled by cooling and ventilation equipment. It is more difficult to control RH than temperature because relative humidity not only relies on air exchange from the infiltration and ventilation, but also related to evaporation from growing media and transpiration of the plants. (Gao 2012)

Therefore, the present research is aimed to develop, construct, and test an experimental greenhouse that will be equipped with cooling and ventilation control system to maintain optimum growing environment for Lettuce and mint growth during summer and winter seasons through the following specific objective:-

- 1- Connecting the greenhouse to an adequate cooling system.
- 2- Supplying the designed system with environmental instruments to control the interior climate for plant growth under environmentally controlled high-yield conditions as well as offering an opportunity to reduce the electrical energy consumption.
- 3- Investigating the effect of adequate mechanical ventilation to adjust the relative humidity of air inside the constructed greenhouse.
- 4- Comparing the productivity of the designed system with a traditional greenhouse that has the same shape, dimensions, cover, and orientation with natural ventilation.
- 5- Evaluate the costs of the cooling process.