

Ain shams university Faculty of science Chemistry department

"Potentiometric Sensors Based on Poly (Vinyl Chloride) Matrix Membranes and their Applications in Biochemical and Analytical Chemistry"

A Thesis

"Submitted for the degree of Master of Sciences as a partial fulfillment for requirements of the master of Science"

In

Inorganic and Analytical Chemistry

Presented by

Nada Hassan Ali Elbehery

Chemistry Department, Faculty of Science, Ain Shams University

Supervised by

Prof. Dr. Saad Elsayed M. Hassan, (D.SC.)

Prof. of Analytical Chemistry, Faculty of Science, Ain Shams University

Prof. Dr. Ayman Helmy Kamel

Prof. of Analytical Chemistry, Faculty of Science, Ain Shams University

Ain shams university Faculty of science Chemistry department

Potentiometric Sensors Based on Poly (Vinyl Chloride) Matrix Membranes and their Applications in Biochemical and Analytical Chemistry

Thesis submitted by

Nada Hassan Ali Elbehery

For the Degree of M.Sc. of Science in (Inorganic & Analytical Chemistry)

To

Department of Chemistry

Faculty of Science

Ain Shams University

"Potentiometric sensors based on Poly (Vinyl Chloride) matrix membranes and their applications in Biochemical and Analytical Chemistry"

Thesis Advisors	Thesis Approval	
Prof. Dr. Saad Elsayed M. Hassan, (D.SC.)	•••••	
Prof. of Analytical Chemistry, Faculty of Science, Ain Sham	s University	
Prof. Dr. Ayman Helmy Kamel		
Prof. of Analytical Chemistry. Faculty of Science. Ain Sham	s University	

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgements

It's a great pleasure to express my deepest thanks and gratitude to *Prof. Dr. Saad Elsayed M. Hassan, D.SC.* for his encouragement creative and comprehensive advice until this work came to existence.

Also, I would like to express my extreme sincere gratitude and appreciation to *Prof. Dr. Ayman Helmy Kamel* for his kind endless help generous advice and support during the study.

I would like to acknowledge everyone who played a role in my academic accomplishments. over all, my parents, who supported me with love and understanding. Without your support, I could never have reached the present success.

Secondly, my committee members, each of whom has provided patient advice and guidance throughout the research process. Thank you all for your unwavering support.

Nada Hassan Ali Elbehery

❖ <u>Published Papers Extracted from The Master Thesis:</u>

- Potentiometric detection of low-levels of sulfamethazine in milk and pharmaceutical formulations using novel plastic membrane sensors, Electrochemical science and Engineering, 2018, Accepted.
- 2. Novel potentiometric 2, 6-dichlorophenolindophenolate (DCPIP) membrane-based sensors: Assessment of their input in the determination of total phenolics and ascorbic acid in beverages, Sensors, 2019, Accepted.
- 3. Non-Equilibrium Potential Responses towards Neutral Orcinol Using All-Solid-State Potentiometric Sensors Integrated with Molecularly Imprinted Polymers, Polymers, 2019, Accepted

Contents

Page
List of contents
List of Figures v
List of Tablesix
List of abbreviationsx
Summaryxv
Chapter (I)
General Introduction
1.1 History of ISE 1
1.1.1. Development of Reference electrode
1.2. Components of ISE and their functions 3
1.2.1. Polymer
1.2.2. Plasticizer
1.2.3. Ionophore
1.2.4. Ionic additive
1.3. Important Potentiometric Characteristics5
1.3.1. Selectivity

1.3.2. Detection limit Improvement6
1.3.3. Response time6
1.4. Advantage of Solid State Electrodes
1.4.1. Conventional Ion Selective Electrodes7
1.4.2 Limitations of Conventional Ion Selective Electrodes7
1.4.3. Solid Contact reference solution8
1.5. How Solid State ISEs work9
1.5.1 Basic Characteristics of Solid State ISE9
1.5.2. Ion to Electron Transduction11
1.5.2.1. Symmetrical ISE transduction mechanism11
1.5.2.2. Asymmetrical ISE transduction mechanism11
1.5.2.2.1. Solid state ISEs with high redox capacitance11
1.5.2.2.2. Solid state ISEs with double layer capacitance13
1.5.2.3. Coated Wire Electrode13
1.6. Recent advanced technologies in potentiometry15
1.6.1 PAPER ISE15
1.6.1.1 Basics and History of PAPER ISE15
1.6.1.2 Features of PAPER ISE16
1.6.2. Sensor array16
1.6.3. Molecularly Imprinting Polymer (MIP)17
1.7. Recent Trends in Potentiometric Sensors
1.7.1. Strip type Potentiometric cell18
1.7.2. Conductive paper based on carbon nanotubes18

1.7.3. Paper based microfluidic device	20
1.8. References	21
Chapter (II)	
Potentiometric detection of low-levels of sulfameths milk and pharmaceutical formulations using novel membrane sensors	
2.1. Introduction	31
2.2. Experimental	33
2.2.1. Reagents and solutions	
2.2.2. Apparatus	34
2.2.3. Sensor construction and EMF measurements	34
2.2.4. Flow injection setup and measurements	35
2.2.5. Analytical applications	36
2.3. Results and Discussion	36
2.3.1. Sensors characteristics	36
2.3.2. Method validation	38
2.3.2.1. Accuracy and precision	41
2.3.2.2. Linearity, limit of detection (LOD) and limit of quantification (LOQ)	41
2.3.2.3. Specificity	
2.3.2.4 Ruggedness (Robustness)	
2.3.3. Flow Injection Assembly	45
2.3.4. Assessment of sulfamethazine	48
2.4. Conclusion	52

2.5. References	53
Chapter (III)	
Novel potentiometric 2,6-dichlorophenolindophenolat	e
(DCPIP) membrane based sensors: Assessment of their in	
in the determination of total phenolics and ascorbic acid	in l
beverages	
3.1 Introduction	60
3.2. Experimental	64
3.2.1. Equipment	64
3.2.2. Reagents and Chemicals	64
3.2.3. Membrane preparation and sensor construction	65
3.2.4. Direct potentiometric measurements	66
3.2.5. Flow injection setup	67
3.2.6. Potentiometric determination of phenlic antioxidants	67
3.2.7. Total Antioxidant capacity assay in Beverages	68
3.3. Results and discussion	69
3.3.1 Performance Characteristics of the Sensors	69
3.3.2 Method Robustness and Ruggedness	74
3.3.3. Potentiometric determination of phenolic antioxidant	
compounds	
3.3.4 Analytical Applications	
3.4. Conclusion	82
3.5. References	83

Chapter (IV)

Non-Equilibrium Potential Responses towards Neutral Orcinol Using All-Solid-State Potentiometric Sensors Integrated with Molecularly

Imprinted Polymers

4.1. Introduction	89
4.2. Experimental	91
4.2.1. Apparatus	91
4.2.2. Reagents and Materials	92
4.2.3. Polymer synthesis and characterization	93
4.2.4. Membranes and electrodes construction	93
4.3. Results and Discussion	95
4.3.1. Synthesis of MIPs and their characterization	95
4.3.2. Performance characteristics of the sensors	100
4.3.3. Potential stability for MIP/MAA/Gr-ISE	105
4.3.4. Selectivity	108
4.3.5. Optimization of the Flow-through system	111
4.3.6. Analytical Application	114
4.4. Conclusion	115
4.5. References	116

List of Figures:

		Page
	Chapter I	
Fig (1.1)	Four different sensors (L) is the ionophore which can	5
	be neutral or charged, (R) is the lipophilic additive for	
	.(-cations (M+) or anions (L	
Fig (1. 2)	Conventional ISE designs. a) Illustration of a	8
	symmetrical cell facing liquid contact on both sides of	
	the ion-selective membrane (M ⁺ is the primary ion, L is	
	the ionophore, R ⁻ is ionic additive, ML _n ⁺ is the	
	ionophore ion complex). b) Photograph and cross-	
	sectional view of the Philips IS 561 liquid membrane	
	electrode body (MöllerGlassbläserei, Zürich	
	Switzerland).	
Fig (1. 3)	Illustration of conversion conventional ISE to solid	9
	state ISE.	
Fig (1. 4)	Diagram of all relevant interfaces within different	10
	types of ISEs with cation (M+) selective membranes	
	that contain an electrically neutral ionophore(L) and	
	anionic sites (R-): (a) a conventional ISE with an	
	inner filling solution; (b) an all-solid-state ISE based	
	on an anion (A-, R-) doped-conducting polymer (CP)	
	solid contact (SC) with a high redox capacitance; (c)	
	an all-solid-state ISE based on a high-surface-area SC	
	exhibiting a high double layer capacitance.	
Fig (1. 5)	Illustration of some novel Paper based ISEs	19
Chapter (II)		

E: - (2.1)	Structure of the proposed electroactive materials used	37
Fig (2.1)	for construction of sulfamethazine membrane sensors.	
Fig (2.2)	Potentiometric response of SMZ membrane-based	42
Fig (2.2)	sensors using 0.01 M Na ₂ SO ₄ at pH 7.	
	FIA signals for the evaluation of SMZ in 0.01 M	47
	carrier sodium sulphate solution pH 7.0, loop sample	
Fig (2.3)	100 μL, and flow rate 3.5 mL/min; (A) Aliquat-336;	
	(B) MgPC; (C) MnPC; and (D) Nitron/SMZ	
	membrane-based sensors.	
	Chapter (III)	
	Manifold for the two channel FIA set up used for the	
	determination of DCPIP: A, carrier tris buffer solution	
 (2.1)	pH 7; B, peristaltic pump; C, pulse damper; D, sample	
Fig (3.1)	injection valve; E, flow injection detector; F, reference	67
	electrode; G, data acquisition system; H, laptop	
	computer; I, Petri dish.	
Fig (3.2)	Structure of different ion pairs based on 2,6-DCPIP redox	69
119 (012)	dye.	0)
	Effect of plasticizers on the potentiometric response of	
Fig (3.3)	[Neocuproin-DCPIP and Methylene Blue-DCPIP]	71
	membrane-based sensors.	
	Signals obtained in triplicate for (A) sensor I and (B) sensor	73
Fig (3.4)	II. Conditions: carrier solution, 30mMTrisbuffer (pH 7.0),	
	flow rate 3.5 mL/min; sample volume, 100 μL.	
Fig (3.5)	Effect of pH on potentiometric response (A) Sensor I	75

	and (B) sensor II using DOP as a plasticizer.	
Fig (2.6)	Responses of the proposed sensors using DOP as a	76
Fig (3.6)	plasticizer for (A) sensor I and (B) sensor II.	
	Chapter (VI)	•
Fig (4.1)	SEM images of MIP and NIP using (A) MAA and (B)	96
	AA monomers	
Fig (4.2)	FT-IR spectra of the proposed polymers A) MIP/MAA	99
	and (B) MIP/AA; ((a) FT-IR for Orcinol, (b) MIP	
	before template removal, (c) MIP after template	
	removal and (d) NIP.	
Fig (4.3)	Scatchard analysis for the orcinol-imprinted polymers,	100
	Q is the amount of orcinol bind to 20 mg of the	
	constructed polymers, T =25 °C , V = 10 mL, binding	
	time = 20 h.	
Fig (4.4)	Time trace of Orcinol-ISEs in orcinol concentration.	102
	The inset shows the calibration curve of the proposed	
	sensors.	
Fig (4.5)	Time trace of GC/Graphene/Orcinol-ISE in orcinol	104
	concentration range of 10^{-6} - 10^{-4} mol L ⁻¹ . The inset	
	shows the calibration curve of the proposed sensor.	
Fig (4.6)	Chronopotentiograms for (a)GC/Graphene/Orcinol-	106
	ISE and(b) GC/Orcinol-ISE under the constant	
	currents of ±1 nA in 1.0x10 ⁻³ mol L ⁻¹ orcinol solution.	
Fig (4.7)	FIA potentiometric signals, for (A) MAA/TDMAC,	113
	(B) AA/TDMAC based sensors. Conditions: carrier	
	solution, 0.005M NaCL pH 7, flow rate 3.5mLmin ⁻¹ .	

List of Tables:

		Page
Chapter (II)		
Table (2.1)	Performance characteristics of SMZ membrane	40
	sensors in 10-2 M Na2SO4 solution at pH 7.0	
Table (2.2)	Potentiometric selectivity coefficients ($k_{SMZ,B}^{pot}$)	44
	of SMZ membrane sensors in 10 ⁻² M Na ₂ SO ₄ at	
	pH 7.0	
Table (2.3)	Performance characteristics of SMZ membrane	48
	sensors plasticized with o,NPOE under	
	hydrodynamic mode of operation in 10 ⁻² mol L ⁻¹	
	Na ₂ SO ₄ buffer of pH 7.0.	
Table (2.4)	Potentiomeric determination of SMZ in	50
	pharmaceutical preparations using SMZ	
	membrane sensors.	
Table (2.5)	Assessment of SMZ in spiked samples with milk	51
	and chicken muscle by using MnPC/TDMAC	
	membrane based sensor.	
	Chapter (III)	
Table (3.1)	Effect of plasticizer on the potentiometric characteristics of 2,6-DCPIP membrane based sensors.	72
Table (3.2)	Performance characteristics of 2,6 DCPIP	74
	membrane sensors sunder hydrodynamic mode	
	of operation in 30mM Tris buffer (pH 7.0).	
Table (3.3)	Potentiometric selectivity coefficients (log	77

	$K_{DCPIP, J}$) ±SD obtained for the proposed sensors.	
Table (3.4)	Estimation of phenolic antioxidants quantities in mixtures using DCPIP-based membrane sensor.	79
Table (3.5)	Potentiometric assessment of TAC with 2,6-DCPIP based sensors in commercial, fresh juices and pharmaceutical drugs.	81
	Chapter (VI)	
Table (4.1)	Performance characteristics of MIPs based sensors for orcinol evaluation using 30 mM PBS solution, pH7.	107
Table (4.2)	Selectivity coefficients ($K^{pot}_{i,j}$) using separate solution method in 30 mM PBS, pH 7.	110
Table (4.3)	Response characteristics of orcinol sensors using Flow injection analysis in 30 mM PBS, pH 7.	112
Table (4.4)	Determintion of Orcinol content in soil samples using GC/Gr/MIP/AA-ISE.	114