

Correlation between ERCC1 Expression and Response to Cisplatin in Malignant Pleural Mesothelioma

Thesis

Submitted for Partial Fulfillment of MD Degree in Clinical Oncology and Nuclear Medicine

Presented by

Sara Essam Mohamed Zaki

M.B, B.Ch, M.Sc.
Faculty of Medicine, Ain Shams University

Supervised by

Prof. Dr. Tarek Hussein Kamel

Professor of Clinical Oncology Faculty of Medicine, Ain Shams University

Prof. Dr. Khaled Elhusseiny Nasr

Professor of Clinical Oncology Faculty of Medicine, Ain Shams University

Prof. Dr. Manal Mohamed El Mahdy

Professor of Pathology
Faculty of Medicine, Ain Shams University

Prof. Dr. Amr Lotfy Farag

Assistant Professor of Clinical Oncology Faculty of Medicine, Ain Shams University

Dr. Mohamed Essam Saleh

Lecturer of Clinical Oncology Faculty of Medicine, Ain shams University

Faculty of Medicine
Ain Shams University
2019

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Tarek Hussein Kamel**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Khaled Ellhusseiny Masr,** Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof. Dr. Manal Mohamed El Mahdy,** Professor of Pathology, Faculty of Medicine, Ain Shams
University, for her great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof. Dr.**Amr Lotfy Farag, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

Also, I would like to express my deep gratitude to **Dr.**Mohamed Essam Saleh, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain shams University, for giving me the great support and encouragement throughout the whole work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Sara Essam

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	vi
Introduction	1
Aim of the Work	14
Review of Literature	
Epidemiology of Malignant Pleural Mesothelion	na15
Pathogenesis	22
Classification	27
Biomarkers	28
Diagnosis	34
Staging	46
Treatment	48
Patients and Methods	57
Results	66
Discussion	89
Summary and Conclusion	95
Recommendations	97
References	98
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Pleura Mesothelial markers	44
Table (2):	The 7th edition of the AJCC Cancer malignant pleural mesothelioma	0 0
Table (3):	Response criteria of Modified RECIS	ST 60
Table (4):	Demographic data distribution of group	_
Table (5):	Past medical history distribution of group	•
Table (6):	Pleural effusion distribution of group	•
Table (7):	Side pleural and type of distribution of the study group	
Table (8):	ERCC1 expression distribution of group	· ·
Table (9):	Chemotherapy given distribution of group	•
Table (10):	Response to treatment of the study	group71
Table (11):	Surgery distribution of the study gr	oup71
Table (12):	Comparison between negative El positive ERCC1 according to de data	emographic
Table (13):	Comparison between negative El positive ERCC1 according to medical comorbidities	associated
Table (14):	Comparison between negative El positive ERCC1 according to pleur and lymph nodes	al effusion

List of Tables (Cont...)

Table No.	Title	Page No.
Table (15):	Comparison between negative positive ERCC1 according to plet type of pathology	aral side and
Table (16):	Comparison between negative positive ERCC1 according to Cisplatin based chemotherapy	response to
Table (17):	Comparison between negative positive ERCC1 according to Cisplatin based chemotherapy	response to
Table (18):	Progression free survival of the st	udy group 80
Table (19):	Progression free survival betweexpression level is shown	
Table (20):	PFS between all parameters charshown	
Table (21):	One year survival of the study gro	oup 83
Table (22):	1 year survival between ERCC1 ex is shown	_
Table (23):	Overall survival of the study group	85
Table (24):	OS between ERCC1 expression leve	el is shown 86
Table (25):	Overall survival between all characteristics is shown	_

List of Figures

Fig. No.	Title	Page No.
Fig. (1):	Different mechanisms of asbest Mesothelioma	
Fig. (2):	Asbestos-exposed mesothelial cells tumor necrosis factor-α (TNF-α) which its receptor and activates the nucl kappa-light-chain-enhancer of activate (NF-κB) pathway	h binds to ear factor ed B cells
Fig. (3):	Dysregulation of the Hippo pate mesothelioma leads to nuclear transly Yes-associated protein 1 (YAP1) and of TEA domain-transcription-factor dependent transcription to protein proliferation and prevent apoptosis	location of activation (TEAD)- note cell
Fig. (4):	Cisplatin reacts with N7-sites of pur and a double reaction may covale purines.	ently link
Fig. (5):	NER-nucleotide excision repair bette formation of a DNA adduct of change in the DNA helix shape, dama binding factor binds to pre-incision which localizes the damaged area of I	causing a aged DNA a complex
Fig. (6):	CXR showing a right side pleural effu	ısion 36
Fig. (7):	CXR shows circumferential right side thickening, with extension along the fissure	he minor
Fig. (8):	Axial CT image showing right extensive pleural thickening with ipsilateral volume.	
Fig. (9):	Axial MRI image showing right enhatissue with focal invasion of the right chest wall	t anterior

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (10):	Sagittal MRI image showing encast the right hemidiaphragm and invastanterior liver	ion of the
Fig. (11):	Axial PET/CT image showing FDG-av pleural thickening in the left hemithor extends along the left interlobar fissure	rax which
Fig. (12):	Axial PET/CT image showing pleural thickening in the right hemit focal invasion of the posterolateral ch	horax and
Fig. (13):	PET/CT image showing FDG-avid nodules in the anterior right hemit well as FDG-avid paracardiac (black and right hilar lymphadenopathy	chorax, as ck arrow)
Fig. (14):	Diffuse positive staining of mesothelioma for ERCC1 in more the neoplastic cells.	an 50% of
Fig. (15):	Another case malignant showing immunostaning for ERCC1 in more of neoplastic cells.	than 50%
Fig. (16):	Immunostaining of ERCC1 in more of neoplastic mesothelial cells	
Fig. (17):	Malignant mesothelioma showing immunoreactivity in less than 10%	
Fig. (18):	Negative immunoreactivity for ERCC	21 64
Fig. (19):	Pie chart ERCC1 expression distributed study group.	
Fig. (20):	Bar chart between negative ER positive ERCC1 according to age (year	

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig. (21):	Bar chart between negative ERC positive ERCC1 according to sex	
Fig. (22):	Bar chart between negative ERC positive ERCC1 according to resid performance.	ency and
Fig. (23):	Bar chart between negative ERC positive ERCC1 according to DM and	
Fig. (24):	Bar chart between negative ERC positive ERCC1 according to pleura and lymph nodes	l effusion
Fig. (25):	Bar chart between negative ERC positive ERCC1 according to side player of pathology	eural and
Fig. (26):	Kaplan-Meier progression free survistudy group.	
Fig. (27):	The progression free survival Curve to ERCC1 Expression Level	
Fig. (28):	One year survival of the study group.	83
Fig. (29):	1 year survival between ERCC1 expressis shown.	
Fig. (30):	Kaplan-Meier overall survival of the stu	ıdy group 85
Fig. (31):	OS between ERCC1 expression level is	shown 86

List of Abbreviations

Abb.	Full term
<i>ALT</i>	Alanine Transferase
	Absolute Neutrophilic Count
	ArgininoSuccinate Synthetase 1
	Aspartate Transferase
	Breast cancer susceptibility Assocciated Protein
	gene 1
BSC	Best Supportive Care
CD44	Cell-Matrix Contact
CDKN2A	Cyclin-Dependent Kinase Inhibitor 2A
CK5/6	Cytokeratin 5/6
CR	Complete Response
<i>CRP</i>	C-Reactive Protein
CT	Chemotherapy
CT	Computed Tomography
CTC	Common Toxicity Criteria
CTLA-4	Cytotoxic T-Lymphocyte Associated protein
CXR	Chest X-Ray
D2-40	Podoplanin
<i>DMM</i>	Diffuse Malignant Mesothelioma
<i>DNA</i>	.Deoxyribonucleic Acid
<i>ECOG.</i>	Eastern Cooperative Oncology Group
<i>EGFR</i>	Epidermal Growth Factor Receptor
<i>EPD</i>	Extended Pleurectomy Decortication.
<i>EPP</i>	Extrapleural Pneumonectomy
ERCC1	Excision Repair Cross-Complementation Group
	1
<i>ERM</i>	Ezrin, Radixin And Moesin
FDA	Food and Drug Administration
<i>FDG</i>	Fluoro-Deoxy-Glucose

List of Abbreviations (Cont...)

Abb.	Full term
<i>GM-CSF</i>	Granulocte Macrophage Colony Stimulating Factor
HMGB1	High-Mobility Group Box 1
<i>IARC</i>	International Agency for Research on Cancer
<i>ICI</i>	Immune Checkpoint inhibitors
<i>ICL</i>	Interstrand Crosslink
<i>IHC</i>	Immunohistochemistry
<i>IMIG</i>	International Mesothelioma Interest Group
<i>IUD</i>	Intrauterine Device
LDH	Lactate Dehydrogenase
<i>LMM</i>	Localized Malignant Mesothelioma
<i>LMR</i>	Lymphocyte-To-Monocyte Ratio
	Micro Ribonucleotide Acid
<i>MM</i>	Malignant Mesothelioma
<i>MPM</i>	Malignant Pleural Mesothelioma
<i>MRI</i>	Magnetic Resonance Imaging
mTOR	Mammalian Target Of Rapamycin
NCDB	National Cancer Data Base
<i>NCI</i>	National Cancer Institute
NER	Nucleotide Excision Repair pathway
NF2	Neurofibromatosis 2
NF-κB	Nuclear factor kappa-light-chain-enhancer of
	$activated\ B\ cells$
<i>NHL</i>	Non Hodgkin Lymphoma
<i>NLR</i>	Neutrophil Lymphocyte Ratio
ORR	Overall Response rate
<i>OS</i>	Overall Survival
PD	Progressive Disease
PD-L1	Programmed Death Ligand 1

List of Abbreviations (Cont...)

Abb.	Full term
PFT_CT	.Positron Emission Tomography
	.Progression-Free Survival
	.Platelet Lymphocyte Ratio
	.Partial Response
	.Retinoblastoma Protein
_	.Performance Status
	.Prostatic Specific Antigen
	.Response Evaluation Criteria In Solid Tumors
RT	_
SD	
	Standard Deviation
	Standard Error
	.Surveillance, Epidemiology and End Results
	Single nucleotide Variants
	Standarized Uptake Value
	.Simian-Virus 40
	.TEA domain transcription factor
	.Tumor-Necrosis Factor- a
	.Thyroid Transcription Factor 1
	.Upper Limit of Normal
	.Video Assisted Thoracoscopic Surgery
	.White Blood Cell count
	. Well Differentiated Papillary Mesothelioma
	.World Health Organization
	. Wilm's Tumor gene
	Feroderma Pigmentosum complementation
	Factor
<i>YAP-1</i>	.Yes Assocciated Protein 1

ABSTRACT

In case of ERCC1 deficiency, the DNA damage is not repaired, and the altered DNA is unable to replicate, or perform its function, leading to cell damage.

Expression of ERCC1 has been studied as a predictive marker for Cisplatin resistance in different tumors including MPM. Four previously published studies showed a significant correlation between Negative expression of ERCC1 and good response to Cisplatin and also with longer PFS.

Our study showed that ERCC1 was expressed in 33.9% of the patients.

ERCC1 positivity was significantly associated with poor response to treatment, shorter PFS & OS.

Keywords: Excision Repair Cross-Complementation Group 1 - Deoxyribonucleic Acid - Diffuse Malignant Mesothelioma

Introduction

alignant pleural mesothelioma (MPM) arises from the mesothelium lining the pleural cavity. The disease is mainly linked to asbestos exposure (*Welch*, 2007).

Different studies have showed a relation between incidence of mesothelioma and asbestos usage in the previous decades (*Nishikawa et al.*, 2008).

In Egypt, MPM is mostly related to environmental cause with a higher incidence in females and young adults. Epidemiological data proved that the disease incidence increased markedly, 635 cases of mesothelioma were diagnosed at the National Cancer Institute (NCI) and Abbassia Chest Hospital, Cairo between the year 2000 and 2003. This large number is four times more than the number diagnosed in the previous 11 years (*Gaafar and Eldin, 2005*).

MPM is of poor prognosis in late stage, and only few number of patients are diagnosed at an early stage when curative treatment is possible. Inoperable patients usually receive combined platinum-based chemotherapy regimen (*Sorensen*, 2008).

Because multimodality treatment have showed improved survival only in selected cases, most of patients with MPM are treated with systemic chemotherapy (*Krug et al., 2009*).

First-line chemotherapy based on Platinum combined with Pemetrexed has improved average survival time up to 12 months in mesothelioma patients and is recommended as the standard treatment (Nowak, 2012).

Also, combined Cisplatin and Gemcitabine therapy has showed comparable response and survival rates in various phase II trials, with response rates 12–48% and median overall survival (OS) 9.4–13 months (Kalmadi et al., 2008).

Platinum compounds are used in treatment of different cancers, but their efficacy could be limited by the intrinsic or extrinsic resistance of the cancer cells toward their mechanism of action (Martin et al., 2008).

Platinum cytotoxicity is based on the alteration of DNA (Deoxyribonucleic Acid) bases by formation of covalent bond with DNA leading to both inter & intra-strand cross links (Bhagwat et al., 2009).

Nucleotide excision repair is an important pathway in maintaining DNA integrity by the removal of theses helixdistorting cross-links. This pathway seems to be a key element in mediating resistance toward platinum compounds.

There are three major steps in this pathway. First, the recognition of the DNA damage, its excision, and finally, the re-synthesization of the excised area.