Evaluation of 3D Laser Face Scan as a Novel Orthodontic Diagnostic Tool

A Thesis

Submitted to the Faculty of Dentistry, Ain Shams University

In partial fulfillment of the requirements of Master's Degree in Orthodontics

By

Asmaa Salaheldin Seliem Abo Elkhair B.D.S (2010)

> Faculty of Dentistry, Ain Shams University 2019

Supervisors

Dr. Noha Ezzat Sabet

Professor of Orthodontics Vice Dean of postgraduate studies and research Faculty of Dentistry, Ain Shams University

Dr. Dina Hussein El-Ghoul

Associate Professor of Orthodontics Faculty of Dentistry, Ain Shams University

Dr. Noha Ibrahim Abdelrahman

Lecturer of Orthodontics
Faculty of Dentistry, Ain Shams University

Acknowledgment

I would like to express my deepest gratitude and appreciation to **Dr. Noha Ezzat Sabet,** Professor of Orthodontics, Vice dean of Postgraduate Studies and Research, Faculty of Dentistry, Ain Shams University for her supervision and valuable expert guidance throughout the present study. It was a great honor to work under her supervision.

No words can express my sincere thanks to **Dr. Dina Hussein El-Ghoul,** Associate Professor of Orthodontics, Faculty of Dentistry, Ain Shams University for her close supervision, great help and advice throughout the study and for always being there when needed.

My sincere thanks goes to **Dr. Noha Ibrahim Abdelrahman,** Lecturer of Orthodontics, Faculty of Dentistry, Ain Shams University for her patience, motivation and for always being there when needed.

I am also thankful to my colleague **Dr. Marwa Elsayed Ahmed**, Instructor of Orthodontics, Faculty of Dentistry, Ain Shams University for her help in this research as a second observer.

Finally, I would like to express my deep thanks to all my colleagues and staff members of the Orthodontic Department for their support, cooperation and help.

Dedication

To my mother and father for their everlasting support, endless love and care.

To my beloved husband and kids for their continuous encouragement and support.

LIST OF CONTENTS

	Page
List of Abbreviations	I
List of Figures	II
List of Tables	IV
Introduction	1
Review of Literature	3
Aim of the Study	30
Material and Methods	31
Results	60
Discussion	73
Summary	84
Conclusions	86
Recommendations	87
References	88
Appendix I	99
Appendix II	102
Arabic Summary	

LIST OF ABBREVIATIONS

Abbreviation	Full Term
2D	Two dimensional
3D	Three dimensional
CBCT	Cone beam computed tomography
DSD	Digital Smile Design
CT	Computed tomography
FOV	Field of view
mm	Millimeter
mA	Milliampere
kV	Kilovoltage
cm	Centimeter
CMOS	Complementary metal-oxide-semiconductor
S	Second
CCC	Concordance Correlation Coefficient
DE	Dahlberg error
RDE	Relative Dahlberg error
LOA	Limit of agreement
ICC	Intra-Class Correlation Coefficient
μSv	Microsievert

LIST OF FIGURES

No.	Figure	Page
1-	Stereophotogrammetry equipment setup.	21
2-	Structured light equipment setup.	22
3-	3D facial morphometric landmarks.	24
4-	Facial laser scanner.	25
5-	Landmarks identification on the face.	35
6-	The midline landmarks identified by a straight ruler.	35
7-	Participant's stabilization in the machine.	36
8-	The proface part of the machine	38
9-	Insize digital caliper used for measurements.	40
10-	Total facial height (N-Pg).	41
11-	Upper facial height (N-Sn).	41
12-	Lower facial height (Sn-Pg).	42
13-	Vermilion height (Ls-Li).	42
14-	Width of the mouth Ch (R) – Ch (L).	43
15-	Width of the face $Zy(R) - Zy(L)$.	43
16-	Intercanthal width En(R) -En(L).	44
17-	Biocular width Ex(R) - Ex (L).	44
18-	Width of the nose Al(R) – Al (L).	45

LIST OF FIGURES

No.	Figure	Page
19-	3D image on the Romexis software (A) frontal and (B) oblique view.	47
20-	Landmarks identification and labelling on the 3D image.	48
21-	Total facial height (N-Pg).	49
22-	Upper facial height (N-Sn).	49
23-	Lower facial height (Sn-Pg).	50
24-	Vermilion height (Ls-Li).	50
25-	Width of the face Zy (R) – Zy (L).	51
26-	Width of the mouth Ch (R) – Ch (L).	51
27-	Intercanthal width En(R) -En(L).	52
28-	Biocular width Ex(R) - Ex (L).	52
29-	Width of the nose Al(R) – Al (L).	53
30-	CBCT volume with the soft tissue option activated.	54
31-	CBCT volume threshold.	55
32-	Landmarks identification and labelling on CBCT image.	55
33-	Upper facial height (N-Sn) measurement on the CBCT image.	56
34-	Width of the face Zy(R)-Zy(L) measurement on the CBCT image.	56

LIST OF TABLES

No.	Table	Page
1-	Definition of the used facial landmarks	34
2-	Anthropometric Measurements description	39
3-	Assessment of 3D face scan measurements with direct anthropometry measurements using Dahlberg error and relative Dahlberg error	61
4-	Assessment of 3D face scan measurements with direct anthropometry measurements using Bland & Altman and CCC	62
5-	Assessment of the 3D face scan measurements with CBCT scan measurements using Dahlberg error and relative Dahlberg error	64
6-	Assessment of the 3D face scan measurements with CBCT scan measurements using Bland & Altman and CCC	65
7-	Assessment of the CBCT scan measurements with direct anthropometry measurements using Dahlberg error and relative Dahlberg error	67
8-	Assessment of the CBCT scan measurements with direct anthropometry measurements using Bland & Altman and CCC	68
9-	Results of Cronbach's alpha reliability coefficient and Intra-Class Correlation Coefficient (ICC) for intra-observer reliability	70
10-	Results of Cronbach's alpha reliability coefficient and Intra-Class Correlation Coefficient (ICC) for inter-observer reliability	72