

Ain Shams University
Faculty of Women for Arts, Science and Education

Growth promoting and phytopathogen antagonistic effects of rhizobacteria: Application on *Phaseolus vulgaris* L. in Gaza Strip

A thesis

Submitted in Partial Fulfillment of The Requirements for the Doctor of Philosophy Degree in Science (Microbiology)

By

Niddal Saleem Salman Abu Hujier

M.Sc. Biological Sciences/Medical Technology

Under Supervision

Prof. Dr. Mona Ishak Fahd

Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University

Prof. Dr. Fadel Akram Sharif

Prof. of Molecular Biology, Medical Technology Department, Faculty of Health Science, Islamic University of Gaza

Dr. Shimaa Mohamad Abdelsalam

Lecturer of Microbiology, Botany Department Faculty of Women for Arts, Science and Education, Ain Shams University

Ain Shams University
Faculty of women for Arts, Science and Education
Botany department
(2019)

PhD Thesis

Name: Niddal Saleem Salman Abu Hujier.

Title: Growth promoting and phytopathogen antagonistic effects of rhizobacteria: Application on *Phaseolus vulgaris* in Gaza Strip.

Scientific degree: Philosophy Doctor of Science (Microbiology).

Department: Botany.

Faculty: Faculty of Women for Arts, Science and Education.

University: Ain Shams University.

This thesis has not been previously submitted for any degree at this or any other university

Signature Niddal Saleem Salman Abu Hujier

Supervisors

Prof. Dr. Mona Ishak Fahd

Prof. of Microbiology, Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University

Prof. Dr. Fadel Akram Sharif

Prof. of Molecular Biology, Medical Technology Department, faculty of Health Science, Islamic University of Gaza

Dr. Shimaa Mohamad Abdelsalam

Lecturer of Microbiology, Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

Approval Sheet

Approved by	Signature
Prof. Dr. Mona Ishak Fahd	
Prof. of Microbiology, Botany Department,	
Faculty of Women for Arts, Science and Education,	
Ain Shams University	
Prof. Dr. Fadel Akram Sharif	
Prof. of Molecular Biology, Medical Technology	
Department,	
faculty of Health Science,	
Islamic University of Gaza	
De China Mahamad Abdahalan	
Dr. Shimaa Mohamad Abdelsalam	
Lecturer of Microbiology, Botany Department	
Faculty of Women for Arts, Science and Education	
Ain Shams University	

Acknowledgements

My thanks go to *Prof. Mona Ishak Fahd*, my great supervisor who has seen me through this whole process, for her positiveness, intelligence, love of excellence, love of healing, very nice comments, and discussion.

To *Prof. Fadel Akram Sharif*, without his efforts and creative ideas any of this would be possible, who walked so much of this journey with me, I also offer from my heart thanks.

I have been very well supported by *Dr. Shimaa Mohamad Abdelsalam*, who let me know she believed in the value of my work, and was always willing to lend practical support.

I have felt supported by *University College of Science and Technology*, Khan Younis. I am very Thankful for their help.

My *mother*, *father* who deserves special thanks, *sister* and *brothers* contributed greatly on this. I thank them for always being at my side. I am so proud of them.

I would like to thank my *beloved wife* for moral help.

I would like to extend my sincere thanks to the staff molecular lab in Islamic University of Gaza.

I would like to show my greatest appreciation to Ministry of Agriculture in Gaza for their support and help.

Niddal Saleem Salman Abu Hujier

Contents

Titles	Pages
List of tables	
List of figures	
List of abbreviations	
Abstract	
Introduction	1
Objectives and Plane of work	5
Literature Review	6
1. Introduction	6
2. PGPR and root colonization	7
2.1. PGPR	7
2.2. The process of root colonization.	7
2.3. PGPR colonization traits	8
3. Role of PGPR for sustainable agriculture	8
3.1. Biofertilizers	9
4. Role of PGPR in plant disease suppression	17
4.1. Chitinase production	17
4.2. HCN Production	19
4.3. Production of antagonistic substances	19
4.4. Induced systemic resistance (ISR)	20
4.5. Common <i>P. vulgaris</i> L. disease causing agents	23
4.6. Biocontrol of <i>F. oxysporum</i>	28
4.7. Biocontrol of <i>M. phaseolina</i>	28
5. Consortia vs. single application of biocontrol PGPR	29
Materials and Methods	31
1. Bioprospecting for rhizobia.	31

2. Isolation of plant growth promoting rhizobacteria (PGPR)	32
strains	
3. Detection of plant growth promotion traits of rhizobacterial isolated	33
3.1. Quantitative determination of IAA production	33
3.2. Qualitative determination of hydrogen cyanide (HCN)	34
production	
3.3. Qualitative determination of siderophore production	34
3.4. Qualitative determination of Zinc solubilization activity	35
3.5. Qualitative determination of chitin solubilization activity	35
3.6. Qualitative determination of inorganic phosphate solubilization	36
activity	
3.7. Qualitative determination of ACC deaminase activity	36
3.8. Quantitative determination of phytase production	37
4. Biochemical identification tests of PGPR isolates	38
5. Isolation of phytopathogens	38
5.1. Isolation of <i>F. oxysporum</i>	38
5.2. Isolation of <i>M. phaseolina</i>	39
6. Detecting the antagonistic activities of the isolates against	40
phytopathogenic fungi in-vitro	
7. Detection of compatibility between selected isolates	41
8. Selection of isolates for subsequent pot experiment	41
9. Molecular identification.	41
10. Plant inoculation assay	42
11.Analysis of soil used in pot experiments	43
12.Physical and chemical analysis of water used in pot experiments	43
13. Experimental measurements.	45

13.1. Root length	45
13.2. Shoot height	46
13.3. Number of leaves per plant.	46
13.4. Leaf surface area.	46
13.5. Branch number.	46
13.6. Stem diameter.	46
13.7. Time of flower appearance	46
13.8. Fresh weight.	46
13.9. Dry weight.	47
13.10. Appearance of diseases during growth period	47
13.11. Measurement of nitrogen percentage	47
14. Biocontrol of phytopathogens	47
14.1. Inoculation of <i>P. vulgaris</i> L. seeds by bacterial isolates	47
14.2. Inoculation with the fungal pathogens	48
14.3. Disease Evaluation	49
15. Measurement of plant growth parameters	49
16. Statistical analysis	49
Results	51
1. Physiological PGP traits of isolated strains	51
1.1. Quantitative determination of IAA	51
1.2. Qualitative production of HCN	52
1.3. Qualitative production of siderophore	53
1.4. Qualitative determination of zinc solubilization activity	53
1.5. Qualitative determination of chitin solubilization activity	54
1.6. Qualitative determination of inorganic phosphate solubilization	54
activity	
1.7. Qualitative determination of ACC deaminase activity	55

1.8. Quantitative determination of phytase production	58
2. Preliminary screen according to PGP trait results	58
3. Biochemical identification tests of PGPR isolates	59
4. Antagonistic activities of the isolates against phytopathogenic	60
fungi	
5. Secondary screening of isolates upon plant growth promotion and	63
biocontrol action.	
6. Compatibility tests between selected isolates	64
7. Final selection and establishment of bacterial consortia for pot	64
experiments	
8. Results of PCR amplification of partial 16SDNA	65
gene	
9. Molecular identification of selected PGPR by 16s rDNA	65
sequencing	
10. Chemical and physical properties of soil used in pot	70
experiment	
11. Evaluation of Plant growth promoting activities of the selected	71
PGPR strains	
11.1. Pot experiments in non-sterile soil	71
11.2. Pot experiments in sterile soil	93
12. Effects of PGPR isolates against phytopathogenic fungi	113
12.1. Seedlings infected with <i>F. oxysporum</i>	113
12.2. Seedlings infected with <i>M. phaseolina</i>	125
12.3. Seedlings infected with F. oxysporum and M. phaseolina	135
mixture	
12.4. Treatments induced plant growth parameters to significantly	149
equivalent level of healthy control	

12.5. Synopsis of PGPR isolates performance regarding biocontrol	152
and growth promotion	
Discussion	153
Summary	168
Conclusion	172
References	173
Appendices	221
11- Arabic summary	1-4

List of tables

Title	Pages
Table (1): Chemical properties of Beit lahia soil.	32
Table (2): Physical and chemical analysis of water used in pot experiments.	44
Table (3): Bacterial treatments used in pot experiment studies	44
Table (4): Plant growth-promoting traits of G bacterial isolates.	56
Table (5): Plant growth-promoting traits of G ⁺ bacterial isolates.	57
Table (6): Biochemical identification reactions of preliminary selected	61
isolates.	
Table (7): Closest possible genera of isolated rhizobacteria.	62
Table (8): In vitro screening of G PGPR strains against F. oxysporum	63
and Macrophomina phaseolina.	
Table (9): <i>In vitro</i> screening of G ⁺ PGPR strains against <i>F. oxysporum</i>	63
and Macrophomina phaseolina.	
Table (10): Compatibility test between the seven selected isolates.	64
Table (11): Biochemical and antagonistic characteristics of final	65
screened isolates.	
Table (12): Identity of isolates by partial 16S- rDNA sequence analysis.	70
Table (13): Chemical and physical properties of soil used in pot	71
experiment.	
Table (14): Effect of bacterial treatments on root length and shoot height	74
in cm of P. vulgaris L.	

Table (15): Effect of bacterial treatments on leaves number and leaves	75
surface area of <i>P. vulgaris</i> L.	
Table (16): Effects of different bacterial treatments on branch number	79
plant ⁻¹ and stem diameter of <i>P. vulgaris</i> L.	
Table (17): Effects of different bacterial isolates on time of flower	81
appearance.	
Table (18): Effect of bacterial treatments on fresh weight, dry weight,	84
and nitrogen concentration of <i>P. vulgaris</i> L.	
Table (19): Diseases that appeared during growth of <i>P. vulgaris</i> L.	87
seedlings.	
Table (20): Synopsis of PGPR isolates (alone or mixture) that afforded	89
significant increase in different plant growth parameters of P. vulgaris	
L. compared to control.	
Table (21). Growth promotion effects of 19 treatments on <i>P. vulgaris</i> L.	91
plants in greenhouse pot experiments, with the four consortia having the	
highest (GSF) and (FIT ₃) percentages highlighted with shading.	
Table (22): Pearson correlation between vegetative induced variables.	92
Table (23): Effect of bacterial treatments on root length and shoot height	95
of <i>P. vulgaris</i> L. in sterile soil.	
Table (24): Effect of different bacterial treatments on number and	98
surface area of seedling leaves.	
Table (25): Effects of bacterial treatments on branch number and stem	100
diameter of P. vulgaris L.	
Table (26): Effects of bacterial treatments on time of flowering of <i>P</i> .	103
vulgaris L. in sterile soil.	
Table (27): Effects of bacterial isolates on fresh and dry weight of <i>P</i> .	105

vulgaris L. in sterile soil.	
Table (28): Effects of bacterial isolates on nitrogen contents of <i>P</i> .	107
vulgaris L. in sterile soil.	
Table (29): Disease occurrence during growth of <i>P. vulgaris</i> L. in sterile	108
soil.	
Table (30): Synopsis of PGPR isolates (alone or mixture) that afforded	110
significant increase in different plant growth parameters of P. vulgaris	
L. compared to control in sterile soil.	
Table (31). Growth promotion in sterile soil of 19 treatments on <i>P. vulgaris</i>	112
L. plants in greenhouse pot experiments, with the five consortia having the	
highest (GSF) and (FIT ₃) percentages indicated with shading.	
Table (32): Effects of selected PGPR isolates on resistance pattern of <i>P</i> .	115
vulgaris L. treated with F. oxysporum.	
Table (33): Fresh and dry weights of F. oxysporum infected P. vulgaris	117
L. plants under selected PGPR isolates inoculation and controls.	
Table (34): Leaves number plant ⁻¹ and shoot length of <i>F. oxysporum</i>	119
infected P. vulgaris plants under selected PGPR treatments inoculation	
and controls.	
Table (35): Pods number plant ⁻¹ , pods fresh weight plant ⁻¹ , and pod dry	122
weight plant ⁻¹ of F. oxysporum infected P. vulgaris L. plants under	
selected PGPR isolates inoculation and controls.	
Table (36); Growth promotion effects of 19 treatments on <i>P. vulgaris</i> L.	124
plants infected with F. oxysporum in greenhouse pot experiments.	
Table (37): Effect of rhizobacterial isolates on resistance pattern of <i>P</i> .	126
vulgaris L. plants treated with M. phaseolina.	
Table (38): Fresh weight, dry weight, leaves number plant ⁻¹ and shoot	132

length of M. phaseolina infected P. vulgaris L. plants under selected	
PGPR treatments inoculation and controls.	
Table (39): Pods number plant ⁻¹ , pods fresh weight plant ⁻¹ , and pod dry	134
weight plant ⁻¹ of <i>M. phaseolina</i> infected <i>P. vulgaris</i> L. plants under	
selected PGPR isolates inoculation and controls.	
Table (40): Growth promotion effects of 19 treatments on <i>P. vulgaris</i> L.	136
plants infected with <i>M. phaseolina</i> in greenhouse pot experiments.	
Table (41): Effect of selected PGPR isolates on resistance pattern of	137
treated seedlings with F. oxysporum and M. phaseolina mixture.	
Table (42): Fresh and dry weights of F. oxysporum and M. phaseolina	140
mixed infected P. vulgaris L. seedlings under selected PGPR isolates	
inoculation and controls.	
Table (43): Leaves number plant ⁻¹ and shoot length of <i>F. oxysporum</i> and	142
M. phaseolina mixed infected P. vulgaris L. seedlings under selected	
PGPR isolates inoculation and controls.	
Table (44): Pods number plant ⁻¹ , pods fresh weight plant ⁻¹ , and pod dry	145
weight plant ⁻¹ of <i>F. oxysporum</i> and <i>M. phaseolina</i> mixed infected <i>P</i> .	
vulgaris L. plants under selected PGPR consortia inoculation and	
control.	
Table (45): Growth promotion effects of treatments on <i>P. vulgaris</i> L. plants	148
infected with F. oxysporum and M. phaseolina mixture.	
Table (46): Treatments that afforded plant growth promotion to	150
significantly equivalent level of healthy control	