

NEW BGP ROUTE LEAKS CLASSIFICATION AND DETECTION USING SUPERVISED MACHINE LEARNING TECHNIQUE

By

Salma Abdel Monem Abdel Motaleb Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

NEW BGP ROUTE LEAKS CLASSIFICATION AND DETECTION USING SUPERVISED MACHINE LEARNING TECHNIQUE

By Salma Abdel Monem Abdel Motaleb Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE in
Computer Engineering

Under the Supervision of

Prof. Dr. Samir I. Shaheen

Dr. Ahmed Bashandy

Professor of Computer Computer Engineering Faculty of Engineering, Cairo University Associate Professor of Computer Computer Engineering Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

NEW BGP ROUTE LEAKS CLASSIFICATION AND DETECTION USING SUPERVISED MACHINE LEARNING TECHNIQUE

By Salma Abdel Monem Abdel Motaleb Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Computer Engineering

Approved by the Examining Committee:	
Prof. Dr. Samir I. Shaheen	Thesis Main Advisor
Dr. Amr G. Wassal	Internal Examiner
Prof. Dr. Mohamed Z. Abd El Mageed	External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Salma Abdel Monem Abdel Motaleb

Mohamed

Date of Birth: 08/03/1994 **Nationality** Egyptian

E-mail: salmacmpeg@cu.edu.eg

Phone: 01114302362

Address: 33 El-Zhoor st, El Motamiz District,

6 October city, Egypt.

Registration Date: 01/10/2016 **Awarding Date:** 29/7/2019

Degree:Master of ScienceDepartment:Computer EngineeringSupervisors:Prof. Samir I. ShaheenDr. Ahmed Bashandy

Examiners: Prof.Dr. Samir I. Shaheen

Dr. Amr G. Wassal

Dr. Mohamed Zaki Abdel Mageed

(Thesis Main Advisor) (Internal Examiner) (External Examiner)

Title of the thesis:

New BGP Route Leaks Classification and Detection Using Supervised Machine Learning Technique.

Key Words:

BGP; Route Leaks; Leaks Classification; Machine Learning.

Summary:

The route leaks problem is considered one of the unsolved problems in BGP through the previous 15 years. The confidentiality of autonomous systems (ASes) relationships and the lake of advertisement of route leaks incidents are the main two reasons behind this. This thesis solves the route leaks problem relaying on three steps: A new taxonomy for the route leaks types based on their effects to the BGP Traffic not to their ASes relationships is proposed, the first dataset for published real route leaks incidents through the previous years is collected and labeled as route leaks or normal traffic, and the first real-time detection system of route leaks problem using complex features extracted from BGP Update messages only and using Classification algorithms is proposed. The system achieves the best accuracy of 88% and 92% F1 Score, the whole system can detect route leaks upon receiving them in real-time as it runs in less than one second.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:

Date:

Dedication

This thesis is dedicated to my family for their unconditional support, help, and encouragement without whom I would never be the person who am I.

Acknowledgements

I would like to thank Prof. Samir Shaheen and Dr. Ahmed Bashandy for their support, advice, and guidance throughout the thesis. I would like to thank Youssef Ghatas and Eman Hossam for their continuous encouragement, help and their valuable comments and ideas.

Table of Contents

Discl	aimer	xi
Dedic	cation	xi
Ackn	owledgements	xi
Table	of Contents	xiv
List o	f Tables	xi
List o	of Figures	xii
List o	of Symbols and Abbreviations	xiii
Abstr	act	xiv
1	Introduction	1
1.1	Motivation	1
1.2	Objectives	2
1.3	Achievements	2
1.4	Organization of the thesis	3
2	Literature review	4
2.1	Scientific Background	4
	2.1.1 Introduction to Border Gateway Protocol	4
	2.1.2 Autonomous systems relationships	4
	2.1.3 Valley Free Rules	6
	2.1.4 Route leaks definition	7
	2.1.5 Route leaks analysis, measurements and verification	7
	2.1.6 Route leaks effects	7
	2.1.7 Scientific view of different types of treats for the route leaks problem	8
	2.1.8 Machine learning	8
2.2	Probabilistic models	13
2.3	Related Work	14
	2.3.1 AS inference	14
	2.3.2 Control plane	15
	2.3.3 Classification and understanding bgp misconfigurations	15
	2.3.4 Simple Tier-1 ASes detection	16
	2.3.5 Detect routing loops	16

	2.3.6 Detecting large route leaks	16
	2.3.7 Detecting route leaks using historical data and inference	17
	2.3.8 Detecting route leaks by investigating local information	17
2.4	Summary or literature review	18
3	Route leaks	19
3.1	Route leaks classification according to AS relationships	19
3.2	Large Reported Route leak incidents	21
	3.2.1 VolumeDrive 2014 incident [21] Figure 3.2	21
	3.2.2 Telecom Malaysia 2015 incident [22] [23] Figure 3.3	22
	3.2.3 Dodo Network 2012 incident [24] Figure 3.4	23
	3.2.4 Verizon 2014 incident [25]	24
	3.2.5 Amazon 2015 incident [26] Figure 3.5	24
	3.2.6 Google 2015 incident [27] Figure 3.6	25
	3.2.7 Belarusian prefix hijacking [28] Figure 3.7	26
3.3	Route Leaks causes	28
4	Proposed taxonomy to the route leaks	29
4.1	The Four Types Taxonomy	29
	4.1.1 Type (1) More specific route leaks about internal network and customers.	30
	4.1.2 Type (2) More specific route leaks about peers	30
	4.1.3 Type (3) Leaked routes learned from transit provider to another provider .	31
	4.1.4 Type (4) Full table route leak	31
4.2	Statistical analysis of the large reported route leak incidents	31
	4.2.1 Features for statistical analysis for large route leak incidents	32
	4.2.2 Conclusion about the previous results:	35
5	System Model	36
5.1	System blocks diagram	37
5.2	System Inputs and outputs	38
5.3	Data Gathering, Cleaning and labeling	41
	5.3.1 Data gathering	41
	5.3.2 Data labeling	42
5.4	Features selection and extraction	42
	5.4.1 Feature extraction Method 1 (MYSOL database)	44

	5.4.2 Feature extraction Method 2(Patricia tree)	46
5.5	Classification	50
	5.5.1 Decision tree classifier (DT)	50
	5.5.2 Random Forest classifier (RF)	51
	5.5.3 Naïve Bayes classifier (NB)	51
	5.5.4 SVM classifier (SVM)	52
	5.5.5 NN classifier (NN)	52
	5.5.6 XGBoost classifier (XG)	52
5.6	System Algorithm	53
5	Experimental Results	61
6.1	Testing environment and tools:	61
6.2	Population size	61
6.3	Validation	62
6.4	Evaluation metrics	63
	6.4.1 Accuracy	64
	6.4.2 Recall	64
	6.4.3 Precision	64
	6.4.4 F1-Score	64
	6.4.5 Balanced Accuracy	64
	6.4.6 Confusion Matrix	65
	6.4.7 Execution Time	65
6.5	Results	65
	6.5.1 Decision tree classifier (DT)	66
	6.5.2 Random Forest classifier (RF)	67
	6.5.3 Naïve Bayes classifier (NB)	68
	6.5.4 Support Vector Machines classifier (SVM)	69
	6.5.5 XGBoost classifier (XG)	70
	6.5.6 Nearest Neighbors Classifier (NN)	71
	6.5.7 Average statistics for all classifiers on the more balanced dataset	72
	6.5.8 Average statistics for all classifiers on the less balanced dataset	73
6.6	Comparison to previous work	74
7	Discussion	75

7.1	Summary of findings	75
7.2	Limitations	75
8	Conclusion	76
8.1	Conclusion	76
8.2	Future work	77
Refere	nces	78
Appen	dix A: Statistical Analysis results for large route leaks incidents	82
A.1	VolumeDrive 2014 incident [21]	83
A.2	Dodo Network 2012 incident [24]	85
A.3	Verizon 2014 incident [25]	87
A.4	Amazon 2015 incident [26]	89
A.5	Con-Edison [38]	91
A.6	Google 2015 incident [27]	93

List of Tables

TABLE 4-1 FEATURES FOR ROUTE LEAKS ANALYSIS	32
TABLE 4-2 VERIZON INCIDENT FEATURES DURING LEAK PERIODS WITH RESPECT TO	
NORMAL PERIODS(X)	33
TABLE 4-3 AMAZON INCIDENT FEATURES DURING LEAK PERIODS WITH RESPECT TO	
NORMAL PERIODS(X)	
TABLE 4-4 VOLUME DRIVE INCIDENT FEATURES DURING LEAK PERIODS WITH RESPECT	ТО
NORMAL PERIODS(X)	
TABLE 4-5 DODO INCIDENT FEATURES DURING LEAK PERIODS WITH RESPECT TO NORMA	ΑL
PERIODS(X)	
TABLE 4-6 COMPARISON BETWEEN INCIDENTS DURING LEAK PERIODS WITH RESPECT TO	
NORMAL PERIODS(X)	
TABLE 5-1 ROUTE LEAKS DATASET	41
TABLE 5-2 CLASSIFICATION FEATURES	
TABLE 5-3 PATRICIA TRIE COMPLEXITY	
TABLE 5-4 COMPARISON BETWEEN METHOD 1 AND 2	48
TABLE 6-1 CONFUSION MATRIX	65
TABLE 6-2 DECISION TREE CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND LESS	
BALANCED DATASET	66
TABLE 6-3 RANDOM FOREST CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND LES	SS
BALANCED DATASET	67
TABLE 6-4 NAIVE BAYES CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND LESS	
BALANCED DATASET	
TABLE 6-5 SVM CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND LESS BALANCED)
DATASET	69
TABLE 6-6 XGBOOST CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND LESS	
BALANCED DATASET	70
TABLE 6-7 NEAREST NEIGHBOR CLASSIFIER- CLASSIFICATION RESULTS FOR MORE AND	
LESS BALANCED DATASET	71
TABLE 6-8 AVERAGE CLASSIFIERS RESULTS FOR THE MORE BALANCED DATASET	72
TABLE 6-9 AVERAGE CLASSIFIERS RESULTS FOR THE LESS BALANCED DATASET	73
TABLE 6-10 RESULTS OF RLD SYSTEM	74
TABLE A-0-1 VOLUME DRIVE STATISTICS	83
TABLE A-0-2 DODO STATISTICS	85
TABLE A-0-3 VERIZON STATISTICS	87
TABLE A-0-4 AMAZON STATISTICS	89
TABLE A-0-5 CONED STATISTICS	91
TABLE A-0-6 GOOGLE STATISTICS	93

List of Figures

FIGURE 2-1 ASES INTER RELATIONSHIPS	5
FIGURE 2-2 VALLEY FREE RULES	
FIGURE 2-3 MACHINE LEARNING CATEGORIES	9
FIGURE 2-4 DECISION TREE CLASSIFIER EXAMPLE	10
FIGURE 2-5 LINEAR SVM CLASSIFIER EXAMPLE	12
FIGURE 2-6 NAÏVE BAYES CLASSIFIER EXAMPLE	13
FIGURE 2-7 ROUTE LEAKS SOLUTION CATEGORIES	
FIGURE 3-1 THE FIRST FOUR TYPES OF THE SIX-TYPES TAXONOMY	
FIGURE 3-2 VOLUME DERIVE INCIDENT	21
FIGURE 3-3 TELECOM MALAYSIA INCIDENT	22
FIGURE 3-4 DODO NETWORK INCIDENT	23
FIGURE 3-5 AMAZON INCIDENT	25
FIGURE 3-6 GOOGLE INCIDENT	
FIGURE 3-7 BELARUSIAN HIJACKING INCIDENT	
FIGURE 5-1 CONDITIONS FOR PRACTICAL SOLUTION TO ROUTE LEAKS PROBLEM	36
FIGURE 5-2 SYSTEM BLOCK DIAGRAM	38
FIGURE 5-3 BGP UPDATES FILE IN MRT FORMAT-WITHDRAWAL MESSAGE	
FIGURE 5-4 BGP UPDATES FILE IN MRT FORMAT-UPDATES MESSAGE	40
FIGURE 5-5 FEATURES EXTRACTION METHOD 1(MYSQL)	
FIGURE 5-6 FINDING MORE SPECIFIC PREFIXES IN COMPARISON STEP -ALGORITHM	
FIGURE 5-7 BINARY TRIE EXAMPLE	
FIGURE 5-8 PATRICIA TRIE EXAMPLE	
FIGURE 5-9 FEATURES EXTRACTION METHOD 2(PATRICIA TRIE)	
FIGURE 5-10 SEARCH AND INSERT PREFIXES IN PATRICIA TRIE ALGORITHM	
FIGURE 5-11 SYSTEM ALGORITHM-PART1	
FIGURE 5-12 SYSTEM ALGORITHM-PART2	
FIGURE 5-13 SYSTEM ALGORITHM -PART3	
FIGURE 5-14 SYSTEM ALGORITHM -PART4	
FIGURE 5-15 SYSTEM ALGORITHM -PART5	
FIGURE 5-16 SYSTEM ALGORITHM -PART6	
FIGURE 5-17 SYSTEM ALGORITHM -PART7	
FIGURE 5-18 SYSTEM ALGORITHM -PART8	
FIGURE 6-1 DISTRIBUTION OF CLASSES IN THE LESS BALANCED DATASETS	
FIGURE 6-2 DISTRIBUTION OF CLASSES IN THE MORE BALANCED DATASET	
FIGURE 6-3 THE 10 CROSS FOLD VALIDATION PROCESS	63

List of Symbols and Abbreviations

AS Autonomous System

AS-Path Autonomous Systems Path

ASN Autonomous System Number

BGP Border Gateway Protocol

DAG Direct Acyclic Graph

DT Decision Tree classifier

FN False Negative

FP False Positive

GBoost Gradient Boosting classifier

ISP Internet Service Provider

KNN K-Nearest Neighbor classifier

NB Naïve Bayes classifier

RF Random Forest classifier

SVM Support Vector Machine classifier

TCP Transmission Control Protocol

TN True Negative

TP True Positive

Abstract

The route leaks problem is considered one of the unsolved BGP problems since more than fifteen years ago. It has a large negative impact on the global internet stability and reliability. A route leak happens when an autonomous system advertises reachability information with a violation of autonomous inter-relationships policies. This problem is hard to prevent due to human errors and misconfigurations, and hard to detect due to the confidentiality of autonomous systems relationships and lake of publicly-advertised datasets.

Traditional solutions to the route leaks problems use one the following methods: the autonomous systems relationships inference, adding information about connection types to the BGP Update messages, or gathering and comparing information from global vantage points. These solutions were not widely applicable because they may be incomplete, have high time and processing cost, depend on third-parties, or requires modification to the existing protocols.

In this study we address the route leaks problem from three aspects, firstly we propose a new taxonomy to the different types of route leaks depending on their effects of the BGP update messages other than existing taxonomy that depends only on the relationships between autonomous systems which could not help much as these types of information are confidential.

Secondly, we gather and label the first route leaks dataset which consists of all the valid route leaks incidents published on the internet. We use this dataset to generate features list which we used as training and testing data to our classifiers. To accelerate the features generation process we use a memory structure called "Patricia Trie" inspired by the structures used in the router's lookup tables. This structure has reduced the average overall searching and updating run time from several hundreds of minutes to very few seconds.

Lastly, we propose a complete real-time widely applicable detection system to the route leaks updates using supervised learning method, and using the classification technique that can be applied to each border router without adding high time or computational overhead. In our study, we apply and compare between six different classifiers namely (Decision Tree, Random Forest Trees, Support Vector Machines, Naïve Bayes, Nearest Neighbor, and Gradient Boosting) classifiers. Our system proves that it can detect and classify route leaks from normal updates on two datasets the "less balanced" and the "more balanced". The system achieves the best accuracy of 88%, 83% and F1 Score of 92%, 98% for the two datasets respectively. These results can be achieved with a system that runs in less than one second.