

POWER TO GAS: DESIGNING A PILOT PLANT FOR USING SOLAR ENERGY TO PRODUCE FUEL

By

Mahmoud Mohamed Salah Elden

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Interdisciplinary MSc. - Petroleum and Natural Gas Technology

POWER TO GAS: DESIGNING A PILOT PLANT FOR USING SOLAR ENERGY TO PRODUCE FUEL

By Mahmoud Mohamed Salah Elden

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

OF SCIENCE

Interdisciplinary MSc. -Petroleum and Natural Gas Technology

Under the Supervision of

Prof. Dr. El-Sayed El-Tayeb

Prof. Dr. Omar El-Farouk

Professor of Petroleum Engineering Petroleum Engineering Department Faculty Of Engineering, Cairo University Professor of Chemical Engineering Chemical Engineering Department Faculty Of Engineering, Cairo University

Eng. Sherif Hassan Haddara

Former Minister of Petroleum and Mineral Resources

POWER TO GAS: DESIGNING A PILOT PLANT FOR USING SOLAR ENERGY TO PRODUCE FUEL

By Mahmoud Mohamed Salah Elden

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Interdisciplinary MSc. - Petroleum and Natural Gas Technology

Approved by the	
Examining Committee	
Prof. Dr. Omar El-Farouk Professor of Chemical Engineering, C	(Thesis main advisor) Cairo University
Prof. Dr. El-Sayed El-Tayeb	(advisor)
Professor of Petroleum Engineering, C	Cairo University
Eng. Sherif Hassan Haddara	(advisor)
Former Minister of Petroleum and Mi	neral Resources
Prof. Dr. Samia Sobhy Professor of Chemical Engineering, C	(Internal examiner) Cairo University
Eng. Mohamed Abd-El-Azim A	Abd-Elaal (External examiner)

Egyptian Petroleum Holding Company (Ganope)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Mahmoud Mohamed Salah

Date of Birth: 6/10 /1979. **Nationality:** Egyptian

E-mail: mahmoooud_salah@yahoo.com

Phone: 01002591990 **Address:** CAIRO - EGYPT

Registration Date: 1/10/2013 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Interdisciplinary Master - Petroleum & Natural Gas

Technology

Supervisors:

Prof. Dr. El-Sayed El-Tayeb Prof. Dr. Omar El-Farouk Eng. Sherif Hassan Haddara

Former Minister of Petroleum and Mineral Resources

Examiners:

Prof. Dr. Omar El-Farouk (Thesis main advisor)

Prof. Dr. El-Sayed El-Tayeb (Advisor) Eng. Sherif Hassan Haddara (Advisor)

Former Minister of Petroleum and Mineral Resources
Prof. Dr. Samia Sobhy (Internal examiner)
Eng. Mohamed Abd-El-Azim (External examiner)

Chairman of South Valley

Egyptian Petroleum Holding Company (Ganope)

Title of Thesis:

Power to Gas: Designing a Pilot Plant for Using Solar Energy to Produce Fuel

Key Words:

Hydrogen production, photovoltaic system, water alkaline

Summary:

Power to gas (PTG) is the process of converting surplus power into another form of energy. Power-to-gas is the functional description of the conversion of electrical power into a gaseous energy carrier like e.g. hydrogen or methane. This technological concept considered as an interesting tool in the energy transition. The most common form is the hydrogen gas. Hydrogen considered as an energy carrier that produced by several methods. The most common method is the steam gas reforming process that uses natural gas as a feedstock to produce hydrogen. The other method is the water electrolysis process, which is the decomposition of water molecules into hydrogen and oxygen using solar energy. The produced hydrogen injected directly to the natural gas grid with specific limit in transmission or in distribution pipelines. As a result, power-to-gas enables the share of renewables in the energy mix to increase, making this innovation an important topic in achieving a carbon-neutral gas supply in 2050.

Disclaimer

I hereby declare that this thesis is my own original work and that not part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mahmoud Mohamed Salah Date: / / 2019

Signature:

Acknowledgment

This research work is an outcome of the cooperation protocol between the Egyptian Ministry of Petroleum and Cairo University, produced via the post graduate studies interdisciplinary program Natural Gas Engineering and Technology offered to engineers working in the Egyptian oil and gas sector.

The author would like to express his gratitude and appreciation to **Prof. Dr. El-Sayed El-Tayeb** Prof. of Petroleum Engineering, Cairo University for his supervision, continuous advice, valuable comments and unfailing aid all through the course of work of the thesis.

Thanks to **Prof. Dr. Omar El-Farouk**, Prof. of Chemical Engineering, Cairo University for his supervision and effective help.

Appreciation is also due to **Eng**. **Sherif Haddara**, the former Minister of Petroleum and Mineral Resources, for his outstanding support, useful comments and, remarks and guidance all through the learning process of this master thesis.

Thanks to **Prof. Dr. Essam EL-Shenawy**, Prof. of Electrical Engineering, National research center for his outstanding support and effective help.

TABLE OF CONTENTS

LIST OF TAI	SLES	••••••	VI
LIST OF FIG	URES		VII
NOMENCLA	TURE.		IX
ABSTRACT.	•••••		X
CHAPTER 1	INTRO	DDUCTION	1
CHAPTER 2	STAT	EMENT OF THE PROBLEM	4
2.1.The ob	ective		6
2.2.The me	thodolo	zy	7
		HODOLOGY IMPLEMENTATION	
3.1. Literat	ure Revi	ew	8
3.1.1. Pov	er- gas		8
	•	rojects	
	_	system (Solar-Hydrogen Systems)	
		el	
I.	Hydroge	n element	18
II.	Physical	properties	19
III.	Chemica	l Properties	20
IV.	Hydroge	n production methods	21
	A. Refor	ming process	
	1) St	eam reforming of natural gas (SMR)	23
	2) Pa	rtial oxidation (POX)	23
	3) A	tto-thermal reforming (ATR)	24
3.1.5. Wa	er Electr	olysis	24
A.	Alkaline	water electrolysis process (AWE)	27
B.	Polymer	electrolyte membrane (PEM) electrolysis	29
C.		de electrolysis (SOEC)	
3.1.6. Pho	tovoltaic	(PV) characteristics	35
I.		taic fundamentals	
II.		type of PV cell	
		n-crystalline Panels	
		ycrystalline Panels	
		n film/ Amorphous Silicon	
***		ltijunction panels	
111	Photovo	taic module	39

IV. PV modules connection	39
V. PV module parameters	41
Current-voltage characteristics of the solar cell	41
2) Current varies with irradiance	42
3) Voltage varies with temperature	42
3.1.7.Specifications of different PV modules	43
3.2. The Operational Effect of Blending Hydrogen on the Natural Gas	44
3.2.1. Combustion properties of gases	45
I. Wobbe index	45
II. Methane number	49
III. Laminar flame speed	50
3.2.2. Limits of hydrogen blending	51
3.2.3. Sensitive components	56
I. Underground storage	56
II. Gas chromatographs	56
III. Leak detection devices	57
IV. Transportation of hydrogen through pipelines	57
V. Material used for hydrogen transportation	58
VI. Percent of hydrogen injected into a natural-gas	58
VII. Gas turbines	
VIII. Gas compression	60
3.3. Experimental Setup to Produce Hydrogen from Solsr Energy	
3.3.1. Experiment setup	61
3.3.2. Hydrogen cell	62
3.3.3. Photovoltaic module	62
3.3.4. Measurement devices	63
3.3.5. Photovoltaic module characteristic curve I-V	63
3.3.6. Photovoltaic module surface temperature	63
3.3.7. Hydrogen production	63
3.4.Mathematical Simulation of PV-Hydrogen System	64
3.4.1. Mathematical model of water alkaline electrolyzer	65
I. Reversible cell Potential,	66
II. Activation overpotential	66
III. Ohmic overvoltage	66
IV. Hydrogen flow rate	67
3.4.2. Mathematical model of photovoltaic	69
CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION	73
4.1. Photovoltaic Simulation	75

4.1.1.	Simulated I-V and P-V characterization curve characteristics	75
4.1.2.	The measured voltage and input current for electrolyzer	77
4.1.3.	The measured solar power radiation intensity and ambient temperature	77
4.1.4.	The measured hydrogen flow rate	78
4.1.5.	The electrolyzer and overall, system efficiency	78
4.1.6.	Annual performance of PV-Hydrogen system	79
	I. Prediction of annual hydrogen production	79
	II. Annual hydrogen production	81
4.2. Sin	nulation of Alkaline Electrolyzer	83
CHAPTEI	R 5 : ECONOMIC ANALYSIS	87
5.1. Lev	velized Cost of Hydrogen Production for Distribution Pipelines	88
5.2. Lev	velized Cost of Hydrogen Production for Transmission Pipeline	91
5.3. Lev	velized Cost of Hydrogen Production for Future Scenario	94
CHAPTEI	R 6 : CONCLUSION & RECOMMENDATION	98
REFERE	NCES	100
Appendix	A	106
Appendix	В	107

List of Tables

Table 1.1: Egypt's primary energy consumption	1
Table 1.2: Egypt's primary energy consumption by fuel 2016-2017	1
Table 3.1: Power to gas projects	11
Table 3.2 Specific energy for different fuel sources	18
Table 3.3: Hydrogen properties	21
Table 3.4: Alkaline water electrolyzer, technical-economic specifications	28
Table 3.5: Proton exchange membrane electrolyzer, practical and economic	
qualifications	30
Table 3.6: Comparison between different methods of water electrolysis	32
Table 3.7: List of AWEL electrolyzer suppliers	33
Table 3.8: List of PEM electrolyzer suppliers	34
Table 3.9 Typical PV efficiencies (test at 25 °C, 1,000 W/m²)	39
Table 3.10 Demonstrates a few parameters of PV modules	43
Table 3.11 EASE-gas specifications for natural gas quality	47
Table 3.12: Gas qualities of various N.G pipelines and LNG	52
Table 3.13: Gas qualities of various natural gases with addition of 10 % hydrogen	53
Table 3.14: Gas qualities with admixtures of 10 % of hydrogen	55
Table 3.15: Effect of H ₂ blend on compression power	60
Table 3.16: photovoltaic module characteristics	63
Table 3.17: The current utilized Limitations for water alkaline	68
Table 3.18: Data input sheet for PV module type, 53 W (36 cells in series)	72
Table 4.1: Measured input data of a sample day	
Table 4.2: Simulated and experimental parameters of photovoltaic module,	75
Table 4.3: Simulated (V_{max}) , (I_{max}) and the (P_{max}) at different solar radiations,	76
Table 4.4: Hydrogen produced monthly	79
Table 4.5: Expected amount of hydrogen produced monthly	81
Table 4.6: Comparison of the calculated and simulated results	82
Table 4.7: Determination of the electrolyzer potential	83
Table 4.8: Variation between measured and calculated electrolyzer voltage	84
Table 4.9: Simulated, Faraday and electrolyzer efficiencies	85
Table 5.1: Basic design input data	88
Table 5.2: Basic design parameter	89
Table 5.3: Cost of engineering materials	89
Table 5.4: Basic design input data 2 nd case	91
Table 5.5: Basic design Parameter 2 nd case	92
Table 5.6: Cost of engineering materials 2 nd case	
Table 5.7: Basic design input data 3 rd case	94
Table 5.8: Basic design Parameter 3 rd case	
Table 5.9: Cost of engineering materials 3 rd case	95

List of Figures

	2
Figure 1.1 Power - Gas pathways	
Figure 2.1: World primary energy consumption	
Figure 2.2: Differences in the fuel mix across regions	
Figure 2.3: Egypt - primary energy consumption, 2017	
Figure 3.1: Power to CNG	
Figure 3.2: Power to Gas model	
Figure 3.3: Overview of projects in Europe	
Figure 3.4: Current hydrogen limits for gas grid injection	
Figure 3.5: First type of power-gas supply to RAPS systems	
Figure 3.6: Load direct from the PV /wind, and remains to the electrolyzer	
Figure 3.7: Renewable system with electrolyzer (producing hydrogen)	
Figure 3.8: Conventional solar-hydrogen system	
Figure 3.9: Block flow diagram of the case studies modeled.	
Figure 3.10: Hydrogen phase diagram	
Figure 3.11: Ignition range of fuels	
Figure 3.12: Share of primary energy carriers in global hydrogen production	
Figure 3.13: Processes of hydrogen production	
Figure 3.14: Principle of alkaline electrolysis	
Figure 3.15: Proton exchange membrane electrolyzers PEM	. 29
Figure 3.16: Electrolyzer cell voltage according to the temperature at various	
pressures	
Figure 3.17: Photovoltaic panel fundamental	
Figure 3.18: Energy (Eg) band for electrons-holes delivery in semi-conductor mater	
Figure 3.19: Construction of P-N and generating of an electrical field	
Figure 3.20: Photovoltaic energy conversion and power provided to a load	
Figure 3.21: Crystal cells, Mono-crystalline and Poly-crystalline Silicon	
Figure 3.22: (a) cell, (b) module, (c) a solar panel, and (d) array geometry	
Figure 3.23: (a-b) a series connection (c) parallel connection (d) current – voltage	
characteristics curve.	
Figure 3.24: (a) Cells connection in series (b) Cells connection in parallel	
Figure 3.25: Current – Voltage curve	
Figure 3.26: Siemens, module performance at different radiation	
Figure 3.27: Siemens, module (75 W) performance at different cell temperatures	
Figure 3.28: The effect of adding hydrogen of 10 % to various gases on the Wobbe	
index	
Figure 3.29: Effect of hydrogen percentage on the wobbe index and relative density	•
Figure 3.30: The hydrogen and natural gas mix, and the effect on wobbe index	
Figure 3.31: Wobbe index of (HENG), hydrogen enriched natural gas	
Figure 3.32: Methane number with/ without addition of hydrogen	
Figure 3.33: Laminar flame speed against hydrogen portion in methane	
Figure 3.34: The gross energy value of various gases, and effect of hydrogen addit	
with quantity of 10 % on the wobbe index	
Figure 3.35: The effect of hydrogen addition with quantity of 10%	
Figure 3.35: Limits of H ₂ into natural gas	
Figure 3.36: PV-Hydrogen generation system	. 61

Figure 3.37: The water electrolyzer	. 62
Figure 3.38: The photovoltaic module	. 62
Figure 3.39: Polarization curves and break-down of cell voltage	. 65
Figure 3.40: Equivalent current circuit of a photovoltaic cell	. 69
Figure 3.41.: Schematic diagram of PV cells in a module, modules in an array	. 70
Figure 4.1: Sample Excel worksheet for PV characteristics model	. 73
Figure 4.2: Sample Excel worksheet for hydrogen cell characteristics model	. 73
Figure 4.3: Simulated current - voltage and power - voltage	. 75
Figure 4.4: Simulated current-voltage characteristic curve of PV module at various	3
solar radiations.	. 76
Figure 4.5: Current and voltage measured for direct coupling for one day	. 77
Figure 4.6: Solar radiation measured of a certain day	. 77
Figure: 4.7: Measured and calculated total hydrogen flow rate	. 78
Figure 4.8: Overall system, and electrolyzer efficiencies.	. 78
Figure 4.9: Chart of hydrogen prediction	. 80
Figure 4.10: Monthly hydrogen total flow rate, ml/min	. 80
Figure 4.11: Annually hydrogen flow rate L/month	. 81
Figure 4.12: Alkaline electrolyzer current – voltage curve	. 84
Figure 4.13: Faraday efficiency and current density	. 85
Figure 4.13, The relationship between Faraday's efficiency and current density	. 85
Figure 4.14: Hydrogen production and current density	. 86
Figure 4.15: Alkaline electrolyzer efficiency	. 86

Nomenclature

ATR : Auto-thermal reforming
AWE : Alkaline water electrolysis
Boe : Barrel of oil equivalent

Cp : Specific heat capacity at constant pressure [kJ/kg.K] Cv : Specific heat capacity at constant volume [kJ/kg.K]

CCGT : Combined-cycle gas turbine CHP : Combined heat and power

d : Relative density compared to air [-]

FCV : Fuel cell vehicle GHG : Greenhouse gases

HHV : Higher heating value [MJ/Nm³] i : Interest or discount rate [%]

IGCC : Integrated gasification combined cycle

K : Compressibility factor [-]

n : Lifetime [years]
NG : Natural gas
PE : Polyethylene
PV : Photovoltaic
PTG : Power to gas

PEM : Proton exchange membrane

PEMFC : Polymer electrolyte membrane fuel cell

Q : Normal flow rate [Nm³/h]

R : Universal gas constant = 8.314 J/mol.K

RES : Renewable energy sources

SI : Spark ignition

SMR : Steam methane reforming SOE : Solid oxide electrolyzer

WI : Wobbe index, based on the higher heating value [MJ/Nm³]

Z : Compressibility factor Kwh/m³ : Kilowatt hour/m³

MM Toe : Million-ton oil equivalent

°E : Cell Potential

MPPT : Maximum power point tracker

Mz : Methane number

MW :Mega watt GJ :Giga joule

Abstract

Balancing between the energy demand and supply is very important for the economy, as well as social development of a country. The country is facing from unbalance of energy mix. Therefore, the government has confirmed to diversify the sources of energy to overcome this issue.

Renewables energy is energy derived from an infinite source, it is very important to choose the power source you use. Many factors, such non-toxicity, cost, stability, efficiency and environmental effects should be taking into consideration. Many industries around the world still rely on fossil fuels. There is no doubt that these types of fuel are extremely effective in terms of the quality of energy production, but fossil fuels will be exhaust in one day and industries must be transform into renewable sources as soon as possible. Solar energy considered as a suitable energy source, as Egypt lies in the bright belt and has abundance amount of sunshine consistently. Energy is the main factor of industry, as the population of the world increases and people hope for a higher standard of living, the amount of energy is increasing to meet the necessities.

Blending of hydrogen with the natural gas network proposed as a method for increasing the utilization of renewable energy systems, for example, photovoltaic cells. Hydrogen injection will be accepted with a specific limit without increasing the risk associated with natural gas mixed in end-use devices, durability and integrity of the current natural gas infrastructure.

In this work, an alkaline electrolysis system designed and constructed to produce hydrogen using photovoltaic (PV) module as a source of power. The system installed, tested and modeled under the weather conditions in Cairo. In addition, the system designed in numerical simulated and validated through empirical data using Excel spreadsheet. The simulation results verified with the corresponding measured data under the same conditions of weather of Egypt.

The goal of this work, study the ability of hydrogen production by coupling of a PV array with alkaline water electrolyzer directly, by matching the current and the voltage of two components.

The variation of the monthly average maximum output energy of PV modules mounted facing south with 30° tilt angle, indicates that, the photovoltaic module current, is directly affected by the solar radiation intensity. The increasing of the electrolyzer current increases the hydrogen production flow rate in the proposed small scale system, that has electrolyzer box of 4500 cm³, containing 80%, electrolyte solution by volume, with electrodes of 2 cm² cross section area.

It is predicted that, the annual hydrogen flow rate strongly affected by the climatic conditions of solar radiation and ambient temperature. The hydrogen flow rate ranges from 16 ml/min in winter months to about 26 ml/min as maximum value for summer months. For the proposed electrolyzer dimensions, an average 322 liters of hydrogen monthly produced. The electrolyzer efficiency is almost (52-64%). With the present knowledge of the hydrogen production from electrolyzer, the production cost calculations were prepared based on a 2 MW electrolyzer plant, the hydrogen production cost ranges between $4.9-5.3~\text{kg}~\text{H}_2$, which equal to $0.44-0.47~\text{s/m}^3~\text{H}_2$. It is clear that the power price is an essential parameter for hydrogen production.

Chapter 1: Introduction

There is public awareness of the negative social and environmental impact of the use of traditional energy sources, and the non-renewable energy sources (fossil fuels) at its highest level at all. The world reserve of oil and natural gas may stay to an additional 40 years just at the present utilization rate

Egypt primary energy consumption is about 91.6 MMtoe in 2017, 96% of total primary energy consumption in Egypt is from fossil fuels, while some energy comes from hydropower. The government aims to diversify the energy mix in favor of renewable energy resources and set a target to achieve 20% of generated electricity from renewable energy by 2020. [1]

Table 1.1: Egypt's primary energy consumption

Year	1995	2000	2005	2010	2015	2016	2017
MMtoe	37.3	48.4	60.5	78.4	84.4	88.2	91.6

Table 1.2: Egypt's primary energy consumption by fuel 2016-2017

MMtoe	Oil	Natural Gas	Coal	Hydro- Electric	Renewables	Total
2016	42	42.4	0.2	3	0.6	88.2
2017	39.7	48.1	0.2	3	0.6	91.6

After suffering a series of shortages in domestic energy supply, declined investment inflows and escalation of political conflict just a few years ago, the situation has been changed after several recent gas finds, including the massive "Zohr" discovery, with the major finds in the Mediterranean Sea and North Delta.

From the previous discussion, it is clear that there is a need for a new energy supplies and upgrade the energy infrastructure in order to be compatible with the growth of demands on fuels requirements for transportation and electricity sectors.

Egypt must expand its energy sources by take advantage of their renewable energy resources, particularly wind, because of its financial potential and solar energy, as illustrated by solar atlas and solar power observations in Egypt. Therefore, it was necessary to look for other sources of energy to use in addition to oil and gas to be a combination of energy balance and thus exploit it in maximizing the capacities of natural gas.

Renewable energy sources (RES) are resources for the continuous natural process on the planet, resources recharged normally and within the future nearly endless. Egypt is one of the solar belt countries that appreciate high solar energy. Therefore,