

ALZHEIMER'S DISEASE PROGRESSION ANALYSIS AND CLASSIFICATION USING T₁-WEIGHTED MRI

By

Basma Hassan Ahmed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in

Biomedical Engineering and Systems

ALZHEIMER'S DISEASE PROGRESSION ANALYSIS AND CLASSIFICATION USING T₁-WEIGHTED MRI

By

Basma Hassan Ahmed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Biomedical Engineering and Systems

Under the Supervision of

Prof.Dr. Ayman Mohammed Eldeib Assoc. Prof. Dr. Inas Ahmed Yassine

Professor of Biomedical Engineering Biomedical Engineering and systems Faculty of Engineering, Cairo University Associate Professor Biomedical Engineering and Systems Faculty of Engineering, Cairo University

ALZHEIMER'S DISEASE PROGRESSION ANALYSIS AND CLASSIFICATION USING T₁-WEIGHTED MRI

By

Basma Hassan Ahmed Ali

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

Biomedical Engineering and systems

Approved by the Examining Committee

Prof. Dr. Ayman Mohammed Eldeib (Thesis Main Advisor) Professor, Biomedical Engineering and Systems, Cairo University

Assoc.Prof. Dr. Inas Ahmed Yassine (Advisor) Associate Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Ahmed Hisham Kandil (Internal Examiner)

Professor, Biomedical Engineering and Systems, Cairo University

Prof. Dr. Samia Abd Alraziq Mashaly (External Examiner)

Professor in electronic research institute

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Basma Hassan Ahmed Ali

Date of Birth: 1/11/1990 **Nationality:** Egyptian

E-mail: bhassan@eng1.cu.edu.eg

Phone: 01006024076

Address: 115 waw, Hadayek El-Ahram, Giza

Registration Date: 1/10/2014 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Biomedical Engineering and Systems

Supervisors:

Prof. Dr. Ayman Mohammed Eldeib Assoc. Dr. Inas Ahmed Yassine

Examiners:

Prof. Dr. Samia Abd Alraziq Mashaly (External examiner)

-Professor in electronic research institute

Prof. Dr. Ahmed Hisham Kandil (Internal examiner)

Prof. Dr. Ayman Mohammed Eldeib (Thesis main advisor)

Assoc. Prof. Dr. Inas Ahmed Yassine (Advisor)

Title of Thesis: Alzheimer's Disease Progression Analysis and Classification

for T₁-Weighted MRI

Key Words:

Alzheimer's disease; MRI; MMSE; SVM; VolBrain

Summary:

Alzheimer's disease (AD) is a considered one of the common elderly diseases. It is a type of dementia that causes changes in behavior in addition to memory loss because of the death of brain cells. There are three stages for Alzheimer disease named: Alzheimer's Disease patient (AD), Mild cognitive impairment (MCI) and Early stage. In this work, we proposed a promising method to classify the different categories of Alzheimer and the healthy control (HC) subjects using multiple T₁-weighted MRI scans of the whole brain volume directly to extract several features by subtracting the longitudinal data of different visits and compute the associated changes in the brain. These features are then fed to the Support Vector Machine (SVM) classifier. The main advantage of this method is that it doesn't involve lots preprocessing steps including the segmentation that was done to extract the hippocampus or amygdala or any other region of interest, which is considered as an expensive and complicated process. The second part of this thesis is employing a bio-statistical analysis to compute the cross-sectional correlation/regression between different clinical assessments such as MMSE,... and ... and four Volume of Interest (VOI) named hippocampus, amygdala, lateral ventricles and total brain volume formed of WM and GM. It was observed that MMSE is the most significant assessment, having a high correlation with the four VOI. The graphical representation of the volumetric changes in the different VOI was studied longitudinally along with the shrinkage rate of hippocampus, amygdala and overall brain volume as well as the enlargement rate of lateral ventricles through the progression stages of the disease compared to the normal subjects.

Disclaimer

I hereby declare that this thesis is my own original work and no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and

have cited them in the reference section.

Name: Basma Hassan Ahmed	Date:
Signature:	

Acknowledgments

First and foremost, I thank **ALLAH**, the most gracious, the ever merciful for helping me finishing this work. I want to thank all those, who helped me by their knowledge and experience. I will always appreciate their efforts. I would like to offer my sincere thanks to **Dr. Mustafa El-Attar** for his cooperation and support and my supervisors **Prof. Dr. Ayman Eldeib** and **Assoc. Prof. Dr. Inas A. Yassine.** I owe them for valuable supervision, continuous encouragement, useful suggestions, and active help during this work. My sincere appreciation and gratitude to my family for their help and patience during the preparation of this work

Table of Contents

ACK	NOWLEDGMENTS	I
LIST	OF TABLES	IV
LIST	OF FIGURES	V
NOM	ENCLATURE	VIII
ABST	RACT	X
CHAI	PTER 1: INTRODUCTION	1
1.1.	Brain Anatomy	2
1.2.	ALZHEIMER DISEASE	4
1.3.	DIAGNOSIS OF ALZHEIMER DISEASE AND ITS PROGRESSION	5
	1.3.1. STAGES OF ALZHEIMER'S PROGRESSION	5
	1.3.1.1. MILD ALZHEIMER'S DISEASE: THE EARLY STAGE	6
	1.3.1.2. MODERATE ALZHEIMER'S DISEASE: MIDDLE STAGE	6
	1.3.1.3. SEVERE ALZHEIMER'S DISEASE: LATE STAGE	7
	1.3.2. CLINICAL ASSESSMENTS	8
	1.3.2.1. MINI MENTAL STATE EXAMINATION (MMSE)	8
	1.3.2.2. THE CLINICAL DEMENTIA RATING (CDR)	8
	1.3.2.3. FUNCTIONAL ACTIVITIES QUESTIONNAIRE (FAQ)	9
	1.3.2.4. GLOBAL DETERIORATION SCALE (GDSCALE)	9
	1.3.3. IMAGING TECHNIQUES	9
1.4.	PROBLEM STATEMENT	10
1.5.	THESIS STRUCTURES	11
CHAI	PTER 2: LITERATURE REVIEW AND RELATED WORK	12
2.1.	SEGMENT-BASED CLASSIFICATION OF ALZHEIMER'S DISEASE	12
	2.1.1. VOXEL-BASED ANALYSIS	12
	2.1.1.1. DIRECT APPROACH	13
	2.1.1.2. STAND-SCORE APPROACH	14
	2.1.1.3. COMPARE APPROACH	15
	2.1.1.4. ATLAS APPROACH	15
	2.1.2. VERTEX-BASED ANALYSIS	17
	2.1.2.1. DIRECT APPROACH	17
	2.1.2.2. ATLAS-BASED APPROACH	17
	2.1.3. REGION OF INTEREST BASED ANALYSIS	19
2.2.	STATISTICAL ANALYSIS	21
СНА	PTER 3 : CLASSIFICATION SYSTEM BASED ON THE WHOL	E BRAIN
VOLU	U ME	27
3 1	INTRODUCTION	27

3.2. Dataset Description	27
3.3. BLOCK DIAGRAM OF THE PROPOSED SYSTEM	28
3.3.1. VOLUME ALIGNMENT	28
3.3.2. FEATURE EXTRACTION	29
3.3.3. FEATURE SELECTION	30
3.3.3.1. Two sample t-test	31
3.3.3.2. FISHER SCORE	31
3.3.4. CLASSIFICATION TECHNIQUE	32
CHAPTER 4 : BIO-STATISTICAL ANALYSIS	35
4.1. Introduction	35
4.2. DATASET DESCRIPTION	35
4.3. ROI VOLUME CALCULATION	35
4.3.1. VolBrain	36
4.4. CORRELATION BETWEEN THE CLINICAL ASSESSMENTS AND VOLUM	MES OF
Interest	38
4.5. Longitudinal Study of the Volumetric Brain Change thi	ROUGH
ALZHEIMER STAGES	39
CHAPTER 5: RESULTS AND DISCUSSION	41
5.1. Introduction	41
5.2. CLASSIFICATION PERFORMANCE BASED ON THE WHOLE BRAIN VOLUME	41
5.3. STATA ANALYSIS RESULTS	42
5.3.1. CORRELATION BETWEEN THE CLINICAL ASSESSMENTS AND VOLUM	MES OF
Interest	42
5.3.2. LONGITUDINAL STUDY OF THE VOLUMETRIC BRAIN CHANGE THI	ROUGH
Alzheimer Stages	48
CHAPTER 6: CONCLUSION AND FUTURE WORK	55
6.1. Conclusion	55
6.2. FUTURE WORK	56
REFERENCES	57

List of Tables

Table 2.1 Summarization of some related works and percentage accuracies reported in
each study to classify AD from HC or MCI20
Table 2.2 Absolute brain region volume (mm3) (mean ± standard deviation) values o
each group whose brain regions showed linear volume reduction towards AD progression
Error! Bookmark not defined
Table 2.3 Multiple linear regression coefficients between brain region volumes and explanatory variables
Table 4.1 Cross-sectional analysis according to the clinical status
Table 4.2 Absolute brain region volume (mean ± standard deviation) values of each
catergory whose brain regions showed linear volume reduction towards AD progression
39
Table 5.1 Accuracies of SVM classifier
Table 5.2 Correlation coefficient R _s with the four clinical assessments, sex and age43
Table 5.3 Multiple linear regression coefficients between brain region volumes and
explanatory variables44

List of Figures

Figure 1.1 Main four brain lobes [4]	2
Figure 1.2 Limbic system [5]	
Figure 1.3 Hippocampus shape [7]	
Figure 1.4 Healthy and damaged brain cells [10]	
Figure 1.5 An illustration comparing a normal brain and a brain affected by Alzheime	
disease [11]	
Figure 1.6 Early stage of Alzheimer [1]	
Figure 1.7 Moderate stage of Alzheimer [1]	
Figure 1.9 Healthy and advanced Alzheimer brain [14]	
Figure 2.1 Histogram of probability Map of Tissue	
Figure 2.2 Preprocessing pipeline of statistical Parametric Mapping (SPM) [28]	
Figure 2.3 Grey matter, white matter and CSF Tissue masks [27].	
- 18 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Figure 2.4 Bootstrap Method [31]	16
Figure 2.5 Cortical Thickness Calculation [32]	17
Figure 2.6 Cortex gyrus [34]	18
Figure 2.7 Hippocampus and Amygdala position [43]	19
	23
Figure 2.9 Linear correlation between normalized volume and MMSE of each	
individual subject. Regression coefficients are inserted in the equation of each plot [5	2J. .23
Figure 2.10 Two-year changes in clinical and cognitive measures differed significantly between the atrophy subtypes (limbic predominant [LPMRI], typical AD [tAD MRI], and hippocampal sparing [HpSpMRI]). Participants with HpSp decline more quickly than those with the other subtypes, including a significantly greater rate of increasing (a) clinical dementia severity (CDR, p=0.013) and (b) faster cognitive decline on the MMSE (p=0.002), as well as (c) functional impairment (FAQ, p=0.020) [53]	.24
Figure 2.12 Adjusted whole-brain volume measurements of mutation carriers (relative to time of clinical diagnosis of AD) and controls (relative to the date of their last scan [54].	e I
Figure 3.1 Block Diagram of overall proposed system.	
Figure 3.2 Coronal magnetic resonance imaging (MRI) scans of an 82-year-old healthy control woman and their subtraction image. (a): Baseline MRI, (b): repeated scan after one year, (c): another repeated scan after two years from the baseline, (d): subtraction image after aligning the repeated scans onto the baseline	.29
Figure 3.3 Coronal magnetic resonance imaging (MRI) scans of an 82-year-old man with familial Alzheimer's disease and their subtraction image. (a): Baseline MRI, (b): repeated scan after 6-month, (c): another repeated scan after one years from the baseline, (d): subtraction image after aligning the repeated scans onto the baseline	:

Figure 3.4 Coronal magnetic resonance imaging (MRI) scans of an 82-year-old	
MCI man and their subtraction image. (a): Baseline MRI, (b): repeated	30
scan after one year, (c): another repeated scan after two years from the baseline, (d):	20
subtraction image after aligning the repeated scans onto the baseline	
Figure 3.5 Support vectors [68]	
Figure 3.6 Kernel function for non-linear Classification [68]	
Figure 3.7 K-fold cross validation [70]	
Figure 3.8 Leave one out Cross Validation [70]	
Figure 4.1 Flow chart of volume estimation in Volbrain	
Figure 4.2 VolBrain steps [72]	
Figure 4.3 VolBrain subcortical structure (a) Healthy control subject, (b): AD patient,	,
(c) MCI patient.	
Figure 4.4 Ranges of correlation coefficient (R _s) [73].	39
Figure 4.5 Normalized brain volumes (mean \pm standard deviation) expressed as a	
percentage of the total intracranial volume (TIV) for each group of healthy control	
subjects, MCI patients and AD patients.	40
Figure 5.1 Single Linear regression between normalized volume of hippocampus and	
MMSE of each individual subject.	
Figure 5.2 Single Linear regression between normalized volume of hippocampus and	
CDR of each individual subject.	
,	
Figure 5.3 Single Linear regression between normalized volume of amygdala and	
MMSE of each individual subject.	47
Figure 5.4 Single Linear regression between normalized volume of lateral ventricles	
and MMSE of each individual subject.	
Figure 5.5 Single Linear regression between normalized volume of brain (GM and	١,
WM) and MMSE of each individual subject	47
Figure 5.6 Normalized hippocampus volume measurements of healthy control (HC)	Τ,
subjects starting from the baseline visit and along the follow-up visits	18
Figure 5.7 Normalized hippocampus volume measurements of MCI patients starting	40
from the baseline visit and along the follow-up visits	40
<u> </u>	49
Figure 5.8 Normalized hippocampus volume measurements of AD patients starting	40
from the baseline visit and along the follow-up visits	
Figure 5.9 Normalized Amygdala volume measurements of HC subjects starting from	1 ~^
the baseline visit and along the follow-up visits.	
Figure 5.10 Normalized Amygdala volume measurements of MCI patients starting from	om 50
the baseline visit and along the follow-up visits.	
Figure 5.11 Normalized Amygdala volume measurements of AD patients starting fro	
the baseline visit and along the follow-up visits.	
Figure 5.12 Normalized Lat. Ventricle volume measurements of HC subjects starting	
from the baseline visit and along the follow-up visits	
Figure 5.13 Normalized Lat. Ventricle volume measurements of MCI patients starting	3
from the baseline visit and along the follow-up visits	
Figure 5.14 Normalized Lat. Ventricle volume measurements of AD patients starting	
from the baseline visit and along the follow-up visits	52
Figure 5.15 Normalized Brain (GM and WM) volume measurements of HC patients	
starting from the baseline visit and along the follow-up visits	53

Figure 5.16 Normalized Brain (GM and WM) volume measurements of MCI patients	S
starting from the baseline visit and along the follow-up visits	53
Figure 5.17 Normalized Brain (GM and WM) volume measurements of AD patients	
starting from the baseline visit and along the follow-up visits	54

Nomenclature

AAL Automated Anatomical Labeling

AD Alzheimer's disease

ADNI Alzheimer's disease Neuroimaging Initiative

ANOVA Analysis of Variance
BET Brain Extraction Tool
BOVW Bag-of-Visual-Words
CDR Clinical Dementia Rating
CHF Circular harmonic functions
CT Computed Tomography
CSF Cerebrospinal Fluid

DL-CNN Deep Learning- Convolutional Neural Networks

EM Expectation and maximization EEG Electroencephalography

FAQ Functional Activities Questionnaire FMRI Functional Magnetic Resonance Imaging

FSL FMRIB Software Library
GDSCALE Global Deterioration Scale

GM Gray Matter

GUI Graphical user interface

HC Healthy Control

IADL Instrumental activities of daily living

ITK Insight Segmentation and Registration Toolkit

K-nearest neighbor classifier **KNN** Linear discriminant analysis **LDA** Leave One Out Cross Validation **LOOCV** Mild cognitive impairment **MCI MLE** Maximum likelihood estimate **MMSE** Mini Mental State Examination **MRI** Magnetic Resonance Imaging **NIA** National Institute on Aging

NIBIB National Institute of Biomedical Imaging and

Bioengineering

NTI Normalized Thickness Index

OPLS Orthogonal Partial Least Squares to Latent

Structures.

PCA Principle component analysis
PCC Posterior cingulate cortex
PET Positron emission tomography

RBF Radial Basis Function
ROC Receiver Operating Curve

ROI Region of interest

TIV Total Intracranial Volume

SIFT Scale-invariant feature transform

SPECT Single-photon emission computed tomography

SPHARM Spherical harmonics

SPHARM-PDM Spherical Harmonics-Point Distribution Model

Statistical Parametric Mapping Speeded-Up Robust Features SPM **SURF** Support vector machine SVM

SVM Recursive Feature Elimination SVM-RFE

Voxel-based Morphometric VBM

Volume of interest VOI VolBrain Volume of Brain WM White Matter

Abstract

Alzheimer's disease (AD) is a considered one of the common elderly diseases. It is a type of dementia that causes changes in the patient behavior in addition to memory loss because of the death of brain cells. It is considered a chronic neurodegenerative progressive disease which gets worse over time. In the Early stage, the patient may perform his/her usual activities as he/she still drive, work and deal with other people but with less efficiency. Later occurs the Mild Cognitive Impairment (MCI) stage, known as moderate Alzheimer's disease, that is considered the longest stage and may last for many years in which the patient may suffer from many troubles like confusing words, getting frustrated or angry, or acting in unexpected ways. AD, is the severe stage or late stage, where the patients lose their ability of responding to their usual environment and that ends with the patient death.

The Hippocampus and Amygdala regions, subregions of the limbic system, are very good indicators for the presence of AD and considered as the most affected part in terms of shape and volume by the Alzheimer deterioration since they are responsible for the memory storage. Moreover, In Alzheimer's disease, there is an overall shrinkage of brain tissues in addition to enlargement of the lateral ventricles.

There is no single medical test that proves a person has Alzheimer's. Diagnosing Alzheimer's involves a complete assessment that is formed of few tests such as: Mini Mental State Examination (MMSE) and Clinical Dementia Rating Scale (CDR), as the standard dementia screening and staging severity tests. There are also other clinical assessments that are used such as The Functional Activities Questionnaire (FAQ) and The Global Deterioration Scale (GDSCALE). These four assessments are based on a scoring system.

In this work, we propose a promising method to classify the different categories of Alzheimer and the healthy control (HC) subjects using a series of longitudinal T₁-weighted MRI scans of the whole brain volume for every follow-up visit. The difference volume of each visit is computed by subtracting each follow-up scan from the baseline MRI to get the 3D feature vector associated with every subject. These features are then fed to the decision support system. The main advantage of the proposed system is eliminating most of the preprocessing steps, which in its turn decreases the processing time and though the overall cost in terms of time and cost. The preprocessing module is formed of the alignment of the longitudinal dataset to the Atlas as well as the down sampling of the volume in order to decrease the processing time.

Both of Two sample T-Test and Fisher Score are studied for dimensionality reduction purposes to overcome the overfitting problem followed by SVM classifier for the classification between HC and MCI subjects, HC and AD subjects and MCI and AD patients. Leave one out cross validation (LOOCV) and 10-Fold are used to study the system robustness based on the accuracy.

The second part of this thesis is employing a bio-statistical analysis to compute the cross-sectional correlation and regression model between different clinical assessments such as MMSE,... and ... and four Volume Of Interest (VOI) named hippocampus,