

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Structural Engineering

A BIM-based decision making facility management workflow to reduce energy costs in buildings

A Thesis submitted in partial fulfillment of the requirements of the degree

Master of Science in Civil Engineering

(Structural Engineering)

by

Yussra Mohamed Emam Rashed

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain Shams University, 2013

Supervised By

Prof. Dr. Ibrahim Abd El Rasheed
Prof. Dr. Khaled Nassar
Cairo - (2019)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

A BIM-based decision making facility management workflow to reduce energy costs in buildings

A Thesis submitted in partial fulfillment of the requirements of the degree Master of Science in Civil Engineering

Yussra Mohamed Emam Rashed

Bachelor of Science in Civil Engineering
(Structural Engineering)

Faculty of Engineering, Ain Shams University, 2013

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Ahmed Samer Ezz Eldin (Examiner) Department of Construction Engineering American University in Cairo	
Prof. Dr. Ali Sherif Abdel Fayad (Examiner) Department of Structural Engineering Ain Shams University	
Prof. Dr. Ibrahim Abd El Rasheed (Advisor) Department of Structural Engineering Ain Shams University	
Prof. Dr. Khaled Nassar (Advisor) Department of Construction Engineering American University in Cairo	
	Date://

Statement

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student name
Yussra Mohamed Emam Rashed
Signature

Date:19 September 2019

Researcher Data

Name : Yussra Mohamed Emam Rashed

Date of birth : 01/03/1991

Place of birth : Giza, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Ain Shams University, Faculty of Engineering

Date of issued degree : 25/09/2013

Current job : Demonstrator in Faculty of Engineering, Ain Shams University

Thesis Summary

The rapid and continuous rise in the energy costs dictates significant cost control efforts during buildings' operation phase. Controlling the energy costs task is often assigned to the facility manager, despite the fact that achieving remarkable energy cost reductions are highly governed by the decisions and choices made during earlier phases of the construction project, when the facility manager is not involved. Nonetheless, valuable Building Information Modelling (BIM) data that ought to enable informed cost-effective recommendations early on are not exploited by facility managers, in addition to the absence of a workflow tailored for facility managers that equips them to reach the best cost-effective decisions.

This study aims to create a workflow for facility managers that exploits BIM to reduce energy costs. The workflow proposed presents a means for the facility manager to take a part in the building envelope assemblies' selection either early on in the project during the design phase, or in the retrofitting phase in order to achieve energy cost savings during the operation phase.

To achieve this aim, case studies are used to apply the workflow, construct a BIM model, perform energy simulations and Life Cycle Costs (LCC) calculations. The building envelope assemblies studied in this research are the external wall assemblies, roof assemblies and glazing assemblies for the external windows. Two different case studies are carried out to compare the LCC of different types of building envelope assemblies. The first case study is a school complex in Jubail, Kingdom of Saudi Arabia (KSA) and the second case study is a commercial office building in New Cairo, Egypt. The economic evaluation techniques used in both case studies on all the assemblies are the present value LCC, benefit-cost ratio, and payback period. Furthermore, a sensitivity analysis is carried out to test the effect of changing the energy escalation rate and unit energy price on the selection. The results of the first case study show that savings up to 18% in the operational energy costs can be achieved just by selecting the proper roof assembly type, whereas operational energy cost savings up to 4% and 8% respectively can be achieved by choosing the suitable wall and glazing assemblies. In the second case study up to 10% savings in operational energy costs can be obtained with the right glazing assembly selection, also a payback period as short as 2 years can be obtained. Conclusively, the proposed workflow can be used by facility managers or other members of the construction team during the initial design stages of the building project, where cost-effective recommendations for the envelope assemblies can be presented to achieve cost savings afterwards during the operation phase.

Keywords: Facility Management, BIM, Life Cycle Cost, Building Envelope, Energy Management

Acknowledgements

First and foremost, I'm utterly grateful to Allah for everything and I pray this work is accepted as useful knowledge solely for His sake.

I owe my deepest gratitude to my parents for without whom none of this work would have been possible. I want to thank my mother Dr. Hanan Abd Elhalim ElAshery, I owe everything I'm to you and your constant prayers, love, and encouragement. My father Dr. Mohamed Emam Rashed, thank you for always paving the road for me and pushing me to be the best I can be, I appreciate your irreplaceable support and generosity.

I would like to express my special gratitude to my supervisors, Prof. Dr. Ibrahim Abd ElRashid and Prof. Dr. Khaled Nassar. You have been extremely helpful, supportive and understanding both on personal and professional levels and for that, I'm extremely thankful. The knowledge and advice you shared with me throughout my education and career made this work what it is.

I also want to thank my examiners Prof. Dr. Ali Sherif Abdelfayad and Prof. Dr. Ahmed Samer Ezz Eldin. It is been an honor to know you and benefit from your expertise and opinions, your insights definitely helped me better shape and present this work.

I would also love to extend my deepest thanks to Dr. Khaled Tarabeih for being such a great mentor all along, you taught me how to do research and my work with you inspired this thesis idea.

I want to thank the departments I'm honored to be a part of; the Structural Engineering Department, particularly Prof. Dr. Amr Ali for his invaluable support and also the Construction Management Department, especially Dr. Mohamed Mekawy for his help and guidance.

Many thanks to my friends and colleagues for their help and encouragement; Madonna Nabil, Sarah Waleed, Abdelraham Anis, and Mohamed Gaber. Special thanks to my dearest friend Manar Zayed, we needn't be in the same field nor the same country for you to be such a greatly needed support, and thank you, Medhat Nassif, for all the help as well.

I owe my deepest gratitude to my second family, Mrs. Samar Kamel, Mr. Ayman Mashaly, Sarah and Ashraf. Thank you so much for all the help, support and motivation, without you it wouldn't have been possible to accomplish this work.

Finally, I am deeply grateful to my sister Radwa and my son Eyad for making me a better version of myself. And last but not least, thank you Islam Mashaly for being such an amazing and supportive husband. I really wouldn't be where I'm today without you as my work and life partner.

Table of Contents

Chapter 1: Introduction	1
1.1 Background	1
1.2 Research Problem	3
1.3 Research Significance	3
1.4 Research Question	4
1.5 Research Objectives	4
1.6 Research Methodology	4
1.7 Document Outline	6
Chapter 2: Literature Review	7
2.1 Facility Management (FM)	7
2.1.1 FM Definition	7
2.1.2 FM Functions	8
2.1.3 FM and Construction Project Stages	10
2.2 Building Information Modelling (BIM)	11
2.2.1 Definition of the BIM process	11
2.2.2 Different BIM dimensions	11
2.2.3 BIM & FM	13
2.3 Life Cycle Cost (LCC)	16
2.3.1 LCC in construction	17
2.3.2 LCC and BIM	18
2.3.3 LCC and FM	19
2.4 Analysing Existing Methods	21
2.4.1 Overview of Existing Methods	21
2.5 Conclusion to Literature	31
2.5.1 Findings	32
Chanter 3: Methodology and Workflow Construction	2.1

3.1 Introduction	34
3.2 Workflow Development	34
3.2.1 Initial Phase	37
3.2.2 BIM Phase	39
3.2.3 Economic Evaluation Phase	42
3.3 Previous Iterations	52
Chapter 4: Workflow Validation through case studies	54
4.1 Introduction	54
4.2 Tools and standards	55
4.3 Case study 1: School Building in KSA	57
4.3.1 Location & Climate	57
4.3.2 Economic background in KSA	57
4.3.3 Materials Used in the Studied Assemblies	59
4.4 Details of the Building Assembly Study and Selection	61
4.4.1 Wall Assemblies	61
4.4.2 Roof Assemblies	77
4.4.3 Glazing Assemblies	90
4.5 Case study 2: Office Building in Egypt	100
4.5.1 Location & Climate	101
4.5.2 Economic background in Egypt	101
4.5.3 Materials Used in the studied assemblies	103
4.6 Details of the Building Assembly Study and Selection	103
4.6.1 Glazing Assemblies	103
4.7 Including the effect of daylighting on the energy simulation for Case Study 2	111
4.7.1 Introduction	111
4.7.2 Tool and metrics used	112
4.7.3 Results and conclusion	113
4.8 Comparing the glazing results in case studies 1 and 2	114
4.9 Sensitivity Analysis	114
4.9.1 Sensitivity Analysis for Economic Rates	115
4.9.2 Sensitivity analysis for energy prices	119
Chanter 5: Conclusion	122

5.1 Summary	123
5.2 Conclusions	124
5.2.1 General	124
5.2.2 Economic Evaluation	124
5.2.3 Architecture Design Effect	126
5.2.4 BIM-LCC Integration	127
5.2.5 Sensitivity Analysis	128
5.3 Research Enhancements	128
Chapter 6: Appendix	129
6.1 An Example for Economic Evaluation Calculations	129
6.1.1 Assumptions:	129
6.1.2 Initial Analysis	129
6.1.3 Using the PVLCC method	129
6.1.4 Using the BCR method	130
6.1.5 Using the PBP method	131
6.1.5 Using the PBP method	