

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Structural Engineering

Performance of Fiber Reinforced Geopolymer Concrete and Mortar

A Thesis submitted in partial fulfillment of the requirements of the degree of

Master of Science in Civil Engineering

(Structural Engineering)

By

Mohamed Gamal Ahmed Khalil El-Sayed

Bachelor of Science in Civil Engineering
(Structural Engineering)
Faculty of Engineering, Ain shams, 2014

Supervised by

Prof. Dr. Hany El-Shafie

Professor of Properties and Testing of Materials Structural Engineering Department Ain Shams University

Dr. Fareed Mahmoud Elgabbas

Assistant Professor Structural Engineering Department Ain Shams University

Dr. Mohamed Samy El-Feky

Researcher Civil Engineering Department National Research Centre

Cairo - 2019

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Structural Engineering

Performance of Fiber Reinforced Geopolymer Concrete and Mortar

By

Mohamed Gamal Ahmed Khalil El-Sayed

Bachelor of Science in Civil Engineering (Structural Engineering)

Faculty of Engineering, Ain shams, 2014

Examiners' Committee

Prof. Dr. Tarek Ali El-Sayed	
Professor of Properties and Testing of Materials	
Structural Engineering Department	
Faculty of Engineering, Helwan University	
Prof. Dr. Mohamed Abdel Moaty Khalaf	
Professor of Properties and Testing of Materials	
Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Hany El-Shafie	
Professor of Properties and Testing of Materials	
Structural Engineering Department	
Faculty of Engineering, Ain Shams University	
	Doto: /

STATEMENT

This thesis is submitted as partial fulfillment of Master of Science in Civil Engineering (Structural Engineering), Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Mohamed	l Gamal	Ahmed
---------	---------	-------

	ignat	nature		
	••••		••••	
Dai	te:	/	/	

RESEARCHER DATA

Name : Mohamed Gamal Ahmed Khalil

Date of birth : 03/10/1991

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Science in Civil Engineering

Field of specialization : Structural Engineering

University issued the degree : Faculty of Engineering, Ain Shams University

Date of issued degree : July 2014

Current job : Transportation Engineer

ACKNOWLEDGEMENTS

First of all, I want to express my profound gratitude to **ALLAH**, for giving me the patience and the effort to complete my work.

It was a great honor to work under the supervision of **Dr. Hany El-Shafei**, Professor of Properties and Testing of Materials, Structural Engineering Department, Faculty of Engineering, Ain Shams University.

Words are not enough to express my gratitude for **Dr. Fareed Elgabbas**, Assistant Professor, Structural Engineering Department, Faculty of Engineering, Ain Shams University, I really appreciate his patience and continuous support. I would like to thank him for his concentrated effort to finalize our work in a tight time frame and also to thank him for the technical knowledge he gave to me as he guided me how to organize my work, how to express my ideas and how to create professional output.

I would like to thank **Dr. Muhammad S. El-Feky**, Researcher in the Civil Engineering Department, National Research Centre, he directed me to a new interesting research area. I really appreciate his consideration and critical support to complete my research. I would like to thank him for the technical knowledge I gain from him.

I would like to share the successfulness of my research with my wonderful wife **Sahar**. She was there as a friend, assistant, and mentor. She helped me in my research from day one so I dedicate this success to her. She encouraged me to improve my personal and technical skills. I am very grateful for the materialistic and spiritual support she gave me.

Needless to mention the support I got from my **Dad**, **Mum**, and **my Brother**. I would like to thank them for the caring they gave me during my research and the spiritual support they provided to me. I would like to thank them for the effort they provided me to finalize my work.

THESIS SUMMARY

Recently, the application of green concrete as an alternative for conventional concrete has become trendy worldwide. The production of innovative concrete is based on utilizing waste materials as one of the concretes components. Therefore, in recent years witnessed an enormous increase in the studies that investigate Geopolymer's properties. The previous studies show that workability loss, the need for heat curing and rapid setting time are the main constraints that restrict Geopolymers cast in place applications. First of all, this study owes to reach the optimum activator ratios which achieve the maximum strength with acceptable fresh properties, then study the effect of incorporating different types and quantities of fibers on the fresh and the hardened properties. The experimental program was held on two consecutive phases. Phase (I) owes to reach the optimum activator ratios which achieve the maximum compressive strength with acceptable workability. In Phase (II) three different types of fibers (Glass Fiber 6 mm, Glass Fiber 18 mm, Polypropylene 18 mm) were incorporated in the optimum Geopolymer mixture (achieved from Phase (I)) with three percentages 1%, 2% and 3% (by volume) and was evaluated in terms of fresh and hardened properties. At the end of each phase statistical analysis was conducted to assess the significance of the variable, obtain estimation equation to predict the value of the responses (compressive strength, flexural strength, tensile strength, and workability) for further researches and choose the optimum mixture in light of the results obtained.

Keywords: Geopolymer composites, Ground granulated blast furnace slag, Metakaolin, Optimum mix design, Fresh properties, Hardened properties, Fiber reinforced Geopolymer mortar.

TABLE OF CONTENTS

Statement .	•••••••••••••••••••••••••••••••••••••••	ii
Researcher	Data	. iii
Acknowled	gements	iv
Thesis sum	mary	v
Table of Co	ontents	vi
List of Figu	ires	ix
List of TAB	BLES	.xii
СНАРТЕ	ER 1. INTRODUCTION	1
1.1. G	eneral	1
1.2. Re	esearch Objectives	2
	hesis Content	
CHAPTER	2. BACKGROUND AND LITERATURE REVIEW	4
2.1. Ba	ackground	4
2.1.1.	Types of Geopolymer concrete	4
2.1.2.	Geopolymer concrete advantages and disadvantages	4
2.2. Li	terature Review	5
2.2.1.	Factors affecting Geopolymer concrete mechanical properties	6
2.2.2.	The effect of incorporation of fibers	.10
CHAPTER	3. EXPERIMENTAL PROGRAM	.13
3.1. Ge	eneral	.13
3.2. O	verview of the experimental program	.14
3.1. Pr	roperties of Materials	.16
3.1.1.	Fine aggregate	.16
3.1.2.	Coarse aggregate	.16
3.1.3.	Slag	.17

3.1.4.	Metakaolin	18
3.1.5.	Sodium Hydroxide (NaOH)	18
3.1.6.	Sodium Silicate (Na ₂ SiO ₃)	19
3.1.7.	Water	20
3.1.8.	Polypropylene Fiber	20
3.1.9.	Glass Fiber	20
3.2. Sa	mples Preparation	22
3.2.1.	Mixing Procedure and Mixture Elements	22
3.2.2.	Curing	26
3.3. Te	esting	26
3.3.1.	Fresh Mortar Tests	26
3.3.2.	Hardened Mortar Tests	28
CHAPTER	4. RESULTS AND DISCUSSION	33
4.1. In	troduction	33
4.2. Th	ne Effect of Activator Ratios on Geopolymer Mortar [Pha	se (I)]
•••	•••••	34
4.2.1.	The Effect of Activator Parameters	34
4.2.2.	Statistical Analysis Outcomes	43
4.3. Th	ne Effect of Fiber on Geopolymer Mortar and Concrete	[Phase
(II)]	••••••	47
4.3.1.	The Effect of Fiber Type on Mixture's Fresh Properties	47
4.3.2.	Strength Gain for Different Fiber Dosage and Type	51
4.3.3.	Effect of Fiber Quantity	60
4.3.4.	Effect of Fiber Type	65
4.3.5.	Comparison between The Behavior of FRGM and FRGC	71
4.3.6.	Statistical Analysis Outcomes	72
	Statistical Alialysis Outcomes	/ ∠
CHAPTE	ER 5. CONCLUSIONS AND RECOMMENDATIONS	

5.2. C	Conclusions	81
5.2.1.	The Effect of Activator Parameters [Phase (I)]	81
5.2.2.	The Effect of Fiber Incorporation [Phase (II)]	83
5.2.3.	The Comparison between Fiber Reinforced Geopolymer C	oncrete
and M	Nortar [Phase (II)]	84
5.3. R	Recommendations for future research	84
LIST OF I	REFERENCES	86

LIST OF FIGURES

Figure 3-1: Coarse Aggregate	16
Figure 3-2: Coarse Aggregate	17
Figure 3-3: Ground Granulated Blast Furnace Slag	
Figure 3-4: Sodium Hydroxide (NaOH)	19
Figure 3-5: Polypropylene Fiber of 18 mm Length	20
Figure 3-6: Glass Fiber of 6 mm Length	21
Figure 3-7: Glass Fiber 18 mm Length	21
Figure 3-8: Water Curing	26
Figure 3-9: Slump Test	27
Figure 3-10: Flow-Table Test	28
Figure 3-11: Mortar and Concrete Cubes for Compression Test	29
Figure 3-12: Compressive Strength Test	29
Figure 3-13: Cylinders for In-Direct Tensile Test	30
Figure 3-14: In-Direct Tensile Test and Compressive Strength Test	
Machine	30
Figure 3-15: Prisms of Dimensions $40 \times 40 \times 160$ and $100 \times 100 \times 300$ for	
Flexural Test	31
Figure 3-16: Flexural Test on Mortar Prism	32
Figure 3-17: Flexural Test on Concrete Prism.	32
Figure 4-1: The Effect of Adding Water and Modulus of Silicate on Slag	
Mixtures	39
Figure 4-2: The Effect of Adding Water and Modulus of Silicate on Hybrid	
Mixtures	39
Figure 4-3: The Effect of Ms on The Flowability	40
Figure 4-4: The Effect of Molarity of Na ₂ O on The Flowability	40
Figure 4-5: Strength Gain for Slag Mixtures	41
Figure 4-6: Strength Gain for Hybrid Mixtures	41

Figure 4-7: The Effect of Ms on 28 Days Compressive Strength	42
Figure 4-8: The Effect of Molarity of Na ₂ O on 28 Days Compressive	
Strength	42
Figure 4-9: Flowability Loss with Time for S-1.7 at Room Temperature of	
17°C and 37°C	43
Figure 4-10: Compressive Strength Actual by Predicted Plot	44
Figure 4-11: Flowability Actual by Predicted Plot	44
Figure 4-12: Contour Plot for Predicted Compressive Strength for Slag	
Mixtures	46
Figure 4-13: Contour Plot for Predicted Compressive Strength For Hybrid	
Mixtures	46
Figure 4-14: The Effect of PP Fiber % on Workability	48
Figure 4-15: Slump Test for Polypropylene FRGM	49
Figure 4-16: Polypropylene FRGM Slump Test Result (150 mm)	49
Figure 4-17: FRGC Slump Test Result (95 mm)	50
Figure 4-18: Compressive Strength Gain for G 6 FRGM	53
Figure 4-19: Compressive Strength Gain for PP 18 FRGM	53
Figure 4-20: Compressive Strength Gain for G 18 FRGM	54
Figure 4-21: Flexural Strength Gain for G6 FRGM	56
Figure 4-22: Flexural Strength Gain for PP18 FRGM	56
Figure 4-23: Flexural Strength Gain for G18 FRGM	57
Figure 4-24: Tensile Strength Gain for G6 FRGM	59
Figure 4-25: Tensile Strength Gain for PP18 FRGM	59
Figure 4-26: Tensile Strength Gain for G18 FRGM	60
Figure 4-27: Effect of Fiber Content (%) on 28 Days Compressive Strength	
	61
Figure 4-28: Effect of Fiber Content (%) on 90 Days Compressive Strength	
	62
Figure 4-29: Effect of Fiber Content (%) on 28 Days Flexural Strength	63

Figure 4-30: Effect of Fiber Content (%) on 90 Days Flexural Strength63
Figure 4-31: Effect of Fiber % on 28 Days Tensile Strength64
Figure 4-32: Effect of Fiber % on 90 Days Tensile Strength65
Figure 4-33: Effect of Fiber Type on Compressive Strength of 1% FRGM66
Figure 4-34: Effect of Fiber Type on Compressive Strength of 2% FRGM66
Figure 4-35: Effect of Fiber Type on Compressive Strength of 3% FRGM67
Figure 4-36: Effect of Fiber Type on Flexural Strength of 1% FRGM68
Figure 4-37: Effect of Fiber Type on Flexural Strength of 2% FRGM68
Figure 4-38: Effect of Fiber Type on Flexural Strength of 3% FRGM69
Figure 4-39: Effect of Fiber Type on Tensile Strength of 1% FRGM70
Figure 4-40: Effect of Fiber Type on Tensile Strength of 2% FRGM70
Figure 4-41: Effect of Fiber Type on Tensile Strength of 3% FRGM71
Figure 4-42: Compressive Strength Actual by Predicted Plot73
Figure 4-43: Flexural Strength Actual by Predicted Plot
Figure 4-44: Tensile Strength Actual by Predicted Plot74
Figure 4-45: Contour Plot for Predicted Compressive Strength for G6
FRGM76
Figure 4-46: Contour Plot for Predicted Compressive Strength for PP18
FRGM77
Figure 4-47: Contour Plot for Predicted Compressive Strength for G18
FRGM77
Figure 4-48: Contour Plot for Predicted Tensile Strength for G6 FRGM78
Figure 4-49: Contour Plot for Predicted Tensile Strength for PP18 FRGM78
Figure 4-50: Contour Plot for Predicted Tensile Strength for G18 FRGM79
Figure 4-51: Contour Plot for Predicted Flexural Strength for G6 FRGM79
Figure 4-52: Contour Plot for Predicted Flexural Strength for PP18 FRGM
80
Figure 4-53: Contour Plot for Predicted Flexural Strength for G18 FRGM80

LIST OF TABLES

Table 3-1: Chemical Composition (%) and Physical Properties of Slag and	
MK by XRF	.17
Table 3-2: Chemical composition of sodium hydroxide	.19
Table 3-3: Chemical composition of sodium silicate	.19
Table 3-4: Mixture Constituents in (kg)	.23
Table 3-5: Mixture Molarity and Water to Binder Ratio	.23
Table 3-6: Mixture Constituents in (kg)	.25
Table 4-1: Compressive Strength and Flow-Table Test Results	.37
Table 4-2: Slump Test Results	.38
Table 4-3:Slump Test Results	.47
Table 4-4: Setting Time Test Results	.51
Table 4-5: Compressive Strength Test Results	.54
Table 4-6: Flexural Strength Test Results	.57
Table 4-7: Tensile Strength Test Results	.60
Table 4-8: Comparison Between Concrete and Mortar Strengths	.72

CHAPTER 1. INTRODUCTION

1.1.General

Portland cement is the main ingredient in concrete. It varies in dosages from 1400 kg/m³ to 75 kg/m³ for rich and poor concrete, respectively [Mindess et al. 2014] with an average of 400 kg for one cubic meter of concrete. In fast-growing markets and owing to various applications that concrete is involved in cement become vital material as oil with annual production costs billions of dollars. Statista estimates that in 2020 the total world cement production will become 4.4 billion tons. Nowadays, the Portland cement industry produces 1.5 billion tons per year. It is worth mentioning that production of one ton of cement emits about one ton of CO₂ [Davidovits et al. 1994] and a very high-temperature more than (1300 °C) is involved in such process [Kakooei, et al. 2012]. In addition to the emission of harmful gases and the high energy required to produce ordinary Portland cement, cement production has a significant influence on the natural resources (quarries) too, as the manufacturing of cement starts from the quarrying of raw materials especially limestone and clay quarry. Consequently, it is necessary to rely on Geopolymer concrete as a new alternative for Portland cement with better technical and environmental performance, to conserve energy and protect the environment [Toparak et al. 2014 and Pacheco et al. 2014]. Recently, the application of green concrete as an alternative for conventional concrete has become more popular worldwide. The production of innovative green concrete is based on using waste materials as one of its components. Geopolymer is considered as green concrete, this is because Geopolymer is cementless composite which based on waste materials such as; Slag, Fly Ash (FA), Metakaolin..etc. Therefore, recent years witnessed an immense increase in the studies that investigate Geopolymer's fresh and hardened properties. The previous studies show that workability loss, the need for heat curing and rapid setting time are the main constraints that restrict Geopolymer concrete applications. Geopolymer concrete as well as ordinary Portland cement concrete shows brittle behavior, this behavior has a significant negative effect on large scale applications. The previous studies show that fiber reinforcement of ordinary concrete and Geopolymer concrete controls the brittle behavior, improve fracture toughness, flexural strength, impact strength, abrasion strength, tensile ductility, and tensile strength, consequently, the reinforcement of concrete and Geopolymer with fibers gain high recognition recently. The target of the first phase of this study is to reach to the parameters that can control the fresh and the hardened properties of Geopolymer composites. Later on, the second phase the fresh and the hardened properties were evaluated for different fiber reinforced Geopolymer mixtures.

1.2.Research Objectives

Many studies investigate different ways to improve Geopolymers fresh properties and assess the hardened properties as well. It was observed that the different activator ratios and concentrations have a great effect on the Geopolymer's fresh and hardened properties. This thesis owes to reach solid activator parameters which affect directly the fresh and hardened properties. The main challenge is to eliminate the need for heat curing and to produce workable Geopolymer mortar with high strength. Later on, this study owes to assess the effect of adding different types and quantities of fibers on the mechanical properties. The following are the main objective of the study:

- 1- Study the mechanical properties of Geopolymers mortar with different base material and activator ratios.
- 2- Investigate the consequences of adding water on the fresh and hardened properties.
- 3- Optimize the activator ratios in terms of workability and compressive strength in light of the statistical analysis conducted.