

Faculty of women for Arts, Science and Education Physics department

Study on Decontamination from Contaminated Soil by Technologically Enhanced Naturally Occurring Radioactive Materials in Oil and Gas Production Fields in the western desert

A thesis Submitted

 $\mathcal{B}y$

RANA ABD EL WAHAB ABD EL MOTALEB

B.Sc. (Physics)

Radiation Protection Department

Nuclear and Radiological Regulatory Authority (ENRRA)

To

Physics Department, Faculty of women for Arts, Science and Education, Ain Shams University

For

Fulfillment of the Master. Degree of Science
In physics

Study on Decontamination from Contaminated Soil by Technologically Enhanced Naturally Occurring Radioactive Materials in Oil and Gas Production Fields in the western desert

Submitted By

RANA ABD EL WAHAB ABD EL MOTALEB

B.Sc. (Physics)

Physical on Radiation Protection Department Nuclear and Radiological Regulatory Authority (ENRRA)

Board of Scientific Supervision

Prof. Dr.

Amal Mahmoud Farag El

Shershabe Professor of Radiation
Physics, Faculty of women for
Arts, Science and Education, Ain
Shams University

Prof. Dr.

Mohamed Reda M. Ezz El-Din

Prof. of Radiation Chemistry

Nuclear and Radiological Regulatory

Authority

Dr. Ahmed Adel Tahaa

Assistant Prof of Radiation Physics Nuclear and Radiological Regulatory Authority

Study on Decontamination from Contaminated Soil by Technologically Enhanced Naturally Occurring Radioactive Materials in Oil and Gas Production Fields in the western desert

Submitted By

RANA ABD EL WAHAB ABD EL MOTALEB

Thesis Supervisors	Approval
Prof. Dr. Amal Mahmoud Farag El Shershabe	
Prof. of Radiation Physics	
Faculty of women for Arts, Science and Education	
, Ain Shams University	
Prof. Dr. Mohamed Reda M. Ezz El-Din	
Prof. of Radiation Chemistry	
Nuclear and Radiological Regulatory Authority	
Dr. Ahmed Adel Tahaa	
Assistant Prof of Radiation Physics	
Nuclear and Radiological Regulatory Authority	

Dedicated

To the spirit of Doctor

Ahmed Adel Tahaa

In life. We loved you dearly. In death we love you still. In our hearts you hold a place. No one else will ever fill.

AKNOWLEDGMENT

First, I thank "ALLAH", the **Beneficent**, and the **Merciful**, for the success of me in the completion of this work.

My grateful thanks are due to the many people who have given of their time and assistance towards the completion of this thesis.

I wish to express my sincere thanks and gratitude to *Prof. Dr. Amal Mahmoud Farag EL Shershabe*, Professor of Radiation Physics, Physics Department, Faculty of women for Arts, Science and Education, Physics department, Ain Shams University, for her supervision, her valuable suggestion, through thesis revision and her valuable support and encouragement.

I would like to express my deep gratitude and sincere thanks to *Prof. Dr. M. Reda Ezz El-Din*, Radiation Protection Department of ENRRA Atomic Energy Authority (AEA) of Egypt, for his close supervision, scientific discussion of the obtained data and for his help in the final presentation of the thesis. He has guided me into this field and continuously helped and encouraged during the whole work.

Finally, I wish to express my sincere thanks and gratitude to the staff members of Radiation Protection Department, ENRRA, Atomic Energy Authority (AEA), for the help given to me during completion of this thesis.

I wish to express my sincere thanks and gratitude to *Prof. Dr. Ahmed Adel Taha*, Assistant Professor of Physics, Radiation Protection Department of ENRRA, Atomic Energy Authority (AEA) of Egypt, for suggesting this point of research, his supervision, continuous support, spiritual encouragement,, kind guidance throughout the present work, and eminent help and effort in the practical part of the study.

Special thanks for **prof. Dr. Hanan Gouda**, Head of physics Department, Faculty of women for Arts, Science and Education, Ain Shams University for all helps and fruitful discussions and all support during analyses results.

Last but not least, my deepest thanks and gratitude to all the Staff Members of physics Department, Faculty of women for Arts, Science and Education, Ain Shams University.

Finally, a lot of thanks should be given to my mother and husband for their love and great support.

Dedicated

To

For my loving family

My MOTHER,

My Father,

My HUSBAND(Mahmoud)

My Sweet Daughters Malika & Rahim

And

My Sisters

Contents

	Page
Acknowledgement	i
Contents	iii
List of Figures	vi
List of Tables	viii
Summary& Conclusion	a
Chapter (1)	
Introduction and literature review	
1.Introduction	1
1.1 Discovery TE-NORM in industry	2
1.2 Origin and formation of TE-NORM	4
1.2.1 NORM in Gas Processing Facilities	10
1.2.2 Radiation Protection Aspects of NORM	11
1.2.2.1 External Exposure	12
1.2.2.2 Internal Exposure	13
1.3 Industries with TENORM Radiation	13
1.4 Overview of NORM waste from the Oil & Gas	
Industry	
1.4.1 Oil Production	17
1.4.2 Gas production	18
1.4.3 Liquid discharges	18
1.4.4 Waste management practices	18
1.5 NORM/TENORM assessment	19
1.6 Risk Assessment	22
1.7 NORM in Shale Gas Extraction	22
1.8 Standards and Regulations of TENORM	24
1.8.1 International standards	25
1.8.2 Standards and regulation within EU member	27
states	
1.8.3 Standards and regulation of TENORM in	30
Egypt	

1.9 Radioactivity measurement	32
1.10 Gamma ray spectrometry analysis	33
LITERATURE REVIEW	33
Chapter (2)	
Material& Experimental Techniques	
2. Measurement Principles and Instruments	44
2.1 Contaminated Soil samples	44
2.1.1 Collection of Contaminated Soil Samples	44
2.1.2 Radiological Measurements for Soil Samples	44
2.2 Gamma Spectrometric Analysis	46
2.2.1 Setup of the Used Gamma Ray Spectrometers	47
2.2.2 Background Reduction of the Gamma	48
Spectrometer	
2.2.3 Energy Calibration and Peak Identification	48
2.2.4 Efficiency Calibration of the Hp-Ge detector	48
2.3 Methodology	56
2.3.1 the first Scenario	56
2.3.2 the Second Scenario	57
2.3.2.1 Particle Size and Activity Distribution in	57
Soil Samples	
2.3.2.2 Washing The Contaminated Soil Using	58
Different Extracting Solutions.	

Chapter (3)	
Results	
3.1 Determination of Activity Concentration in the	59
Investigated Soil Samples	
3.2 Removal of ²²⁶ Ra by using Electrodeposition	66
3.3 Contaminated Soil Washing	83
3.3.1 Particle Size Analysis and Activity Distribution	83
in Soil Particles	
3.3.2 Washing of ≥ 300 µm Soil Fraction	84
3.3.3 Washing of \leq 300 µm & \geq 75 µm Soil Fraction	84
with Salt Solution	
3.3.4 Washing of \leq 75 µm Fraction with Salt Solution	85
Chapter (4)	
Conclusion	
4. conclusion	89
5. reference	93
Arabic summery	

List of Figures

No	Figure	Page
1.1	Scheme of uranium (²³⁸ U) decay series	6
1.2	Scheme of the thorium decay (²³² Th) series	7
1.3	a. external gamma measurement (non-intrusive	20
	radiological walkover survey), to be done	
	using portable handheld scintillometer,	
	dosimeters	
		21
	b. air and dust monitoring by using samplers at	21
	the exposure points (during normal works conditions and specific remediation/	
	decommissions activities determinations)	
	, ,	
1.4	Illustration of a horizontal well showing the	23
2.1	water life cycle of hydraulic fracturing	40
2.1	A block diagram of the used gamma ray	49
2.2	spectrometer set-up Arrangement of the HPGe Detector with the	50
2,2	Lead Shield	30
2.3	The Relative Efficiency Curve	54
3.1	The Average Activity Concentration for (S-1)	61
	Sample	
3.2	The Average Activity Concentration for (S-2)	62
	Sample	
3.3	The Average Activity Concentration for (S-3)	63
	Sample	
3.4	The Average Activity Concentration for (S-4)	64
2.5	Sample	<u> </u>
3.5	The Average Activity Concentration for (S-5)	65
2 6	Sample Electro-deposition of ²²⁶ Ra as a function of	60
3.6	electro-deposition of Ra as a function of electro-deposition time (Stainless Steel Poles)	68
	(S-1) Sample	
3.7	Electro-deposition of ²²⁶ Ra as a function of	71
٦.١	Liceno-deposition of ixa as a function of	/ 1

	electro-deposition time (Aluminum Poles) (S-	
	2) Sample	
3.8	Electro-deposition of ²²⁶ Ra as a function of	74
	electro-deposition time(Ceramic Poles) (S-3)	
	Sample	
3.9	Electro-deposition of ²²⁶ Ra as a function of	77
	electro-deposition time(Cupper Poles) (S-4)	
	Sample	
3.10	Electro-deposition of ²²⁶ Ra as a function of	80
	electro-deposition time(iron Poles) (S-5)	
	Sample	
3.11	Relation between electrodes poles and	82
	removal(%) of ²²⁶ Ra	
3.12	Weight percent distribution in different size	87
	fractions	
3.13	Size / Ra-226 activity analysis of the	87
	contaminated soil sample	

List of Tables

No	Table	Page
1.1	Activity concentration range of Rn, ²²² Pb and ²¹⁰ Po in natural gas	11
1.2	The average worldwide activity levels of U, Th and K	30
1.3	Levels for clearance of material: activity concentrations of radionuclides of natural origin	30
2.1	A Mixed Gamma Source with Different Energies	52
2.2	Calculation of Efficiency	53
2.3	The Relative Efficiency and Normalized Factor for different Energy	55
3.1	A Typical Gamma Spectrometric Analysis for Soil Samples Activity Concentration in Bq/kg	60
3.2	²²⁶ Ra Deposition using Stainless Steel (S.S) Poles	66
3.3	The relationship between time and rate of deposition of ²²⁶ Ra (Stainless Steel Poles) (S-1) Sample	67
3.4	²²⁶ Ra Deposition using Aluminum Poles	69
3.5	The relationship between time and rate of deposition of ²²⁶ Ra (Aluminum Poles) (S- 2) Sample	70
3.6	²²⁶ Ra Deposition using Ceramic Poles	72
3.7	The relationship between time and rate of deposition of ²²⁶ Ra (Ceramic Poles) (S-3) Sample	73
3.8	²²⁶ Ra Deposition using Cupper Poles	75
3.9	The relationship between time and rate of deposition of ²²⁶ Ra (Cupper Poles) (S-4)	76

	Sample	
3.10	²²³ Ra Deposition using Iron Poles	78
3.11	The relationship between time and rate of deposition of 226Ra (Iron Poles) (S-5) Sample	79
3-12	²²⁶ Ra Activity Distribution with Soil Particle Size	85
3.13	²²⁶ Ra activity in > 300 pm soil fraction after washing with different extraction solutions	86
3.14	Table: 226Ra activity in < 300pm & > 75 pm and < 75 pm soil fractions after washing with salt solution	86

Summary and Conclusion

The presence of large quantities of TENORM contaminated soil produced during the extraction and processing of crude oil at oil extraction sites and low cost methods to decontaminate this radioactively contaminated soil.

In this respect, the leaching behavior of the radionuclides from the TENORM contaminated soil samples by different concentration of natural leaching solutions were studied. A series of batch experiments have been conducted to determine leaching behavior of the radionuclides onto the solutions and the different factors affecting the leaching process have been studied.

The aim of the present work is to elucidate the risk of TENORM to the environment and to initiate methods to deal with the resulting contaminated soil by the following methods: 1-Removel of ²²⁶Ra from contaminated soil samples by electrodeposition technique using different electrods materials. 2-Remediation of contaminated soil by washing technique using different leaching solutions.

In general, this thesis is divided into four main chapters:

Chapter 1: Introduction

This chapter comprises a review on TENORM generated from oil and gas industries. It specifies the primary sources of TENORM, its characterization, measurements, monitoring and actual hazards. It comprehensively outlines the industries that may include TENORM Radiation and disposal. This chapter also contains a brief account on the national and international standards and regulations concerning TENORM in oil and gas fields. Finally; it contains a short account about nuclear,

chemical and environmental characteristics of the considered radionuclides (Uranium, Thorium and Radium) and **Literature Review** for contains a brief account on the previous literatures deals with the different methods for the decontamination and removal of radionuclides from TENORM wastes.

Chapter 2: Material and Methods

This chapter gives a full description of the chemicals, materials and the instruments that were utilized in this work as well as the experimental procedures that were followed in this study.

The experimental work is divided into two main parts:

<u>The first part</u> deals with the decontamination of the radioactive (TENORM) contaminated soils. The five TENORM contaminated soil samples collected from different locations of oil and gas fields in Egypt.

<u>The second part</u> deals with Remediation of contaminated soil by washing technique using different leaching methods.

Chapter 3: Results and Discussion

This chapter comprises the obtained data of the experimental work. The obtained data was divided into two main parts. **The first part** deals with the decontamination of the TENORM contaminated soils at the oil and gas production fields. **The second part** deals with Remediation of contaminated soil by washing technique using different leaching methods.

The first part: the decontamination of the TENORM contaminated soils at the oil and gas fields.