

Genomic and Proteomic Studies on the Antimicrobial Activity of *Teucrium polium* (Ja'adah) Extract Irradiated By Gamma Radiation

Thesis Submitted for Ph.D. degree in Microbiology

By Seif Mamdouh Hassan Al Dmour

B.Sc. in Biology (2001) Mutah University M. Sc. in Biology (2007) Mutah University

Under the Supervision of

Prof. Saadia Mohamed Easa

Professor of Microbiology,

Faculty of Science

Ain Shams University

Dr. Sawsan Mohammed El-Sonbaty

Assistant Professor in Biochemistry

National Center for Radiation

Research and Technology.

Atomic Energy Authority

Prof. Noaman Abd Ellatif Eltahawy

Professor of Physiological Chemistry

National Center for Radiation

Research and Technology.

Atomic Energy Authority

Dr. Haitham Nayf Abdalkareem Qaralleh

Assistant Professor in Biomedical Sciences

Department of Medical Laboratory Sciences

Faculty of Science

Mutah University

Department of Microbiology Faculty of Science Ain Shams University

Genomic and Proteomic Studies on the Antimicrobial Activity of *Teucrium polium* (Ja,adah) Extract Irradiated By Gamma Radiation

Thesis
Submitted for Ph.D. degree of science
"Microbiology"

Seif Mamdouh Hassan Al Dmour

M. Sc. (2007) in Biology

Department of Microbiology
Faculty of Science
Ain Shams University

Thesis Submitted for PH.D degree in Microbiology

Name: Seif Mamdouh Hassan Al-Dmour

Title: Genomic and Proteomic Studies on the Antimicrobial Activity of Teucrium polium (Ja'adah) Extract Irradiated By Gamma Radiation

Supervisors: Approval

(1) Prof.Saadia Mohamed Easa

Professor of Microbiology-Faculty of Science- Ain Shams University

(2) Prof. Noaman Abd Ellatif Eltahawy

Professor of Physiological Chemistry-National Center for Radiation Research and Technology. Atomic Energy Authority

(3) Ass. Prof. Sawsan Mohammed El-Sonbaty

Assistant Professor in Biochemistry- National Center for Radiation Research and Technology. Atomic Energy Authority

(4) Ass. Prof. Haitham Nayf Abdalkareem Qaralleh

Assistant Professor in Biomedical sciences-Mutah University

Examination Committee:

(1) Prof. Abdel Mohsen Saber Ismail

Professor of Natural and Microbial Products Chemistry, National. Center Research.

(2) Prof. Mohamad Ez-eldin Abdelhaleem Dauuood

Professor of Microbiology- Faculty of Science- Cairo University

(3) Prof. Saadia Mohamed Easa

Professor of Microbiology-Faculty of Science - Ain Shams University

(4) Prof. Noaman Abd Ellatif Eltahawy

Professor of Physiological Chemistry-National Center for Radiation Research and Technology. Atomic Energy Authority

Declaration

This thesis has not previously submitted for any other universities.

Seif Mamdouh Hassan Al Dmour

Acknowledgment

First of all great praise and thanks to **Allah** for his help in completing this research., then a special acknowledgement to my parents for all the support.

I would like to express my deep gratitude to Prof. Saadia Mohammad Easae, Professor of microbiology, Faculty of Science, Ain Shams University for accept the supervision of the research and her encouragement to start and complete this work sponsoring the thesis. I am very fortunate to work under her supervision. I would like to express my deep gratefulness and appreciation to Prof. Dr. Noaman A. Eltahawy, Professor of Physiological Chemistry, Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, for suggesting the plane and his continuous efforts and advice from which I learned a lot and which had a great impact on the completion of this research, and I am greatly indebted to my other supervisor Pro. Dr. Sawsan Mohammed Elsonbaty, Professor of Biochemistry, Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, providing all the facilities for the accomplishment of this work, for his continuous valuable guidance. She is a great researcher, teacher and advisor. She taught me useful lab. When I get stuck in research, she is the person to help me out. At the same time, she also tried her best to train me to be an independent researcher. She spent tremendous amount of time and energy to help me with various problems that I faced in my research.

My sincere deepest gratitude is due to my other supervisor **Dr. Haithym Qaralleh**, assistant Professor in Biomedical Sciences, Department of Medical and Laboratory Sciences, Faculty of Science, Mutah University, Karak, Jordan for the guidance, motivation, and advices during research years; He is not only advisor, but also a true friend. My warm thanks to **Prof. Dr. Kamel Shaker**, Professor of Chemistry, National Research Centre, Pharmaceutical Science Division, Natural Products Chemistry Department, for support, inspiring discussions and Effective participation during this study. Great thanks to all staff of Microbiology department, National Center for Radiation Research and Technology for their help and support. I would like also to convey many thanks to **Dr. Ibrahim Yousef Abdelrahman**, assistant lecturer of Radiation Biology for their help and support.

ABSTRACT

ABSTRACT

Teucrium polium was gamma irradiated using different doses and then, the antibacterial and antioxidant activities were evaluated. 20 kGy was the recommended dose according to antimicrobial activity (agar well-diffusion) against strains test (*Pseudomonas aeruginosa* and *Staphylococcus* aureus).

At 5.0 kGy, gamma irradiation has reduced bacterial community count in *T. polium* powder to 99.95%, and complete removal of total fungal count.

Further, based on the DPPH radical scavenging activity assay, *Teucrium polium* irradiated with 20kGy showed the highest scavenging activity.

The gas chromatography analysis of non-irradiated ethyl acetate *Teucrium polium* extract revealed a total of 48 compounds whereas in *Teucrium polium* irradiated with 20 kGy this number decreased to 34 compounds. Nevertheless, the content of 10 compounds increased after gamma irradiation while the content of 6 major compounds decreased.

The mechanism of *T. polium* antibacterial activity was investigated against *Pseudomonas aeruginosa* by estimating its effect on DNA fragmentation, scanning electron microscopy (SEM), antioxidant state and total protein.

The results revealed that *P. aeruginosa* when treated with non-irradiated or irradiated ethyl acetate *T. polium* extract showed a marked DNA fragmentation, while no fragmentation was observed in control (untreated cells). Also, SEM observation confirm the antibacterial activity of *T. polium*, as in both cases the bacteria lost its original shape and irregularity was observed.

Moreover, the results showed that, when *Pseudomonas* aeruginosa was treated with non-irradiated and irradiated (20 kGy) ethyl acetate *T. polium* extract there was a significant decrease in catalase activity, reduced glutathione concentration and increase in malondialdehyde compared to the control.

The mechanism of antibiofilm activity of non-irradiated and irradiated *T. polium* (20 kGy) was investigated against *P. aeruginosa*. The results revealed that non-irradiated and irradiated *T. polium* have significantly inhibited *P. aeruginosa* biofilm formation in a dose-dependent manner and have influenced the planktonic cell growth. Moreover, non-irradiated and irradiated *T. polium* have significantly down-regulated the expression of an important *P. aeruginosa* biofilm gene, *PslA*, *PelA*.

ABBREVIATIONS

List of abbreviations

Abb.	Description
%	Per cent
(V/V)	Volume per volume
°C	Celsius
μg.	Microgram
⁶⁰ Co	Cobalt-60
Å	Angstrom (10 ⁻¹⁰ meters)
A. fumigatus	Asperegillus fumigatus
A. pneumonia	Actinobacter pneumonia
ANOVA	Analysis of Variance
ATP	Adenosine triphosphate
B. subtilis	Bacillus subtilis
C. albicans	Candida albicans
CAT	Catalase
CDNA	Complementary deoxyribonucleic acid
CFU	Colony forming unit
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DNase	Deoxyribonuclease
DPPH	2,2-Diphenyl-1-picrylhydrazyl
E. faecalis	Enterococcus faecalis
E. coli	Escherichia coli

EDTA	Ethylenediaminetetra-acetic acid
EPS	Extracelular polymeric substance
eV	Electron volt
g.	Gram
GC-MS	Gas Chromatography and Mass Spectroscopy
GSH	Reduced glutathione
H ₂ O	Water
H_2O_2	Hydrogen peroxide
HC1	Hydrogen chloride
hrs.	Hour/hours
IAEA	International Atomic Energy Agency
IC ₅₀	Half maximal inhibitory concentration
kGy	Kilo Gray
L.	Litre
LPS	Lipopolysaccharid
m.	Meter
MDA	Malondialdehyde
mg.	Milligram
MIC	Minimum Inhibitory Concentration
min.	Minute
ml.	Milliliter
mm.	Millimeter

- IV -

mmol	Millimole
NA	No activity
ng.	Nanogram
NIST	National Institute of Standards and
	Technology
nm.	Nanometer
nmol.	Nanomole
O.D	Optical Density
P. aeruginosa	Pseudomonas aeruginosa
PBS	Phosphate buffer solution
PCR	polymerase chain reaction
PelA	Pellicle A
PI	Percent Inhibition
PslA	polysaccharide synthesis locus A
PSM	Plant Secondary Metabolites
QPCR	Quantitative polymerase chain reaction
RNA	Ribonucleic Acid
RNase	Ribonuclease
ROS	Reactive oxygen species
rRNA	Ribosomal ribonucleic acid
RT	Retention time
S. aureus	Staphylococcus aureus
SD±	Standard Deviation

_____- V -

SEM	Scanning Electron Microscope
SPSS	The Statistical Package for the Social
	Sciences
T. polium	Teucrium polium
TBC	Total Bacterial Count
TC	Tannins content
Temp.	Temperature
TFC	Total flavonoid content
TFC	Total Fungi Count
TLC	Thin layer chromatography
TPC	Total phenol content
UV	Ultra- Violet
WHO	World Health Organization
μl	Micro Littre
μm	Micrometer

LIST OF CONTENTS

