

Faculty of women for Arts, Science & Education Department of Zoology

Ecological Studies on Plankton and Fishes Inhabiting Lake Burullus

A Thesis submitted
In partial fulfillment for the requirement of the degree of Ph.D in Histology and Histochemistry

By

Radwa Ahmed El- Sayed Mostafa

Assistant lecturer in Zoology Department
Faculty of Women for Arts, Science& Education
Zoology Department

Under Supervision of

Prof. Dr. Shadia Mohamed Kadry

Professor of Histology and Histochemistry

Zoology Department Faculty of Women for Arts, Science & Education

Ain Shams University

Dr. Nasr Ahmed Mohamed Ahmed

Lecturer of Pollution chemistry National Institute of oceanography and Fisheries El- Qanater El- Khayria Cairo.

Dr.Mahmoud Hegab Amer Hegab

Lecturer of Invertebrate Ecology National Institute of oceanography and Fisheries El- Qanater El- Khayria Cairo.

2019

QUALIFICATIONS

Name : Radwa Ahmed El-Sayed Mostafa

Scientific Degree : M.Sc. (Histology and Histochemistry)

Department : Zoology

College : Faculty of Women for Arts, Science

& Education

University : Ain Shams University

Graduation Year : 2008

Grants year : 2015

Faculty of women for Arts, Science & Education Department of Zoology

APPROVAL SHEET

Name : Radwa Ahmed El-Sayed Mostafa

Scientific Degree: Ph.D. Degree in Histology and

Histochemistry

Title : Ecological Studies on Plankton and Fishes

Inhabiting Lake Burullus

Supervisors

Prof. Dr. Shadia Mohamed Kadry

Professor of Histology and Histochemistry
Zoology Department
Faculty of Women for Arts, Science & Education
Ain Shams University

Dr. Nasr Ahmed Mohamed Ahmed

Lecturer of Pollution chemistry
National Institute of oceanography and Fisheries
El- Qanater El- Khayria Cairo.

Dr. Mahmoud Hegab Amer Hegab

Lecturer of invertebrate Ecology National Institute of oceanography and Fisheries El- Qanater El- khayria Cairo.

2019

سورة البقرة الآية: ٣٢

Firstly, I would thank to my GOD for helping to finish this work.

There are no words sufficient to express my deepest gratitude to Prof. Dr. Shadia Mohamed Kadary, Professor of Histology and Histochemistry, Faculty of Women for Arts, Science & Education, Ain Shames University for her help, support and advice and avalible support.

My deeply thanks to Dr. Nasr Ahmed. Lecturer of Pollution Chemistry, National institute of Oceanography and Fisheres for planning this research.

Special words and thanks to Dr. Mahmoud Hegab Amer. Lecturer of Zooplankton Ecology for help, support and precious advice.

My deep and great thanks to head and staff members of zoology department and members of National Institute of Oceanography and Fisheries especially Prof. Dr. Soaad Ahmed and Assist. Prof. Dr. Safaa Ismail Tayel for their help and support.

Finally, I would thank my family for the continuous help, support and encouragement to progress this work.

Radwa Ahmed

Abstract

Abstract

The study is carried out at 7 stations along Burullus Lake. The parameter determined in water samples that collected seasonally from autumn 2016 to summer 2017 included some physicochemical parameters (water temperature, electrical conductivity, transparence, pH value, oxygen studies, nutrient salts), distribution of heavy metals in water (Fe, Zn, Cd, Cu, Mn and Pb) and investigation of phytoplankton and zooplankton in water.

Fish analysis included the determination of heavy metal accumulation in muscles of fish, histopathological changes in some organs of fish (muscles, liver and ovary) and histochemical investigation of protein in muscles of *Oreochromis niloticus* fish.

The present study showed that the west of Burullus lake that included (drain7,8,9) was considered the most polluted site because the heavy metal concentrations are high at this site especially during the cold seasons.

LIST OF CONTENTS

Title	Page No.
INTRODUCTION	1
Aim of the Work	5
REVIEW OF LITERATURE	6
1. Water pollution	6
2. Plankton studies	14
3 Effect of water pollution on fish	18
A-bioaccumulation of heavy metals in fish muscles	18
B-Effect of pollution on histology of fish	19
C-Histochemical investigation of protein inmuscles muscles	23
MATERIAL AND METHODS	
1. Description of the studied parameters	25
2. Sampling program	25
3. Methods of analysis	27
3.1. Water analysis	27
3-1-1- Physical characteristics	27
3-1-2 Chemical characteristics	28
3.2.Plankton	34
A-Phytoplankton	34
B-Zooplankton	35
3.3.Fish samples	36
A. Heavy metals in fish	36
B. Histological studies	37
3.2. plankton	a -
C. Histichemical investigation of protein in muscles	37
3.4. Satatistical analysis	38 39
RESULTS	
l. Water analysis	39

Dist of contents

Title	Page No.
a. Temperature	39
b. Electrical Conductivity (EC)	42
c.Transparency (Trans.)	45
B. Chemical characteristics	48
a. Hydrogen Ion Concentration (pH)	48
b. Oxygen studies	51
1. Dissolved Oxygen (DO)	51
2. Biological Oxygen Demand (BOD)	54
3. Chemical Oxygen Demand (COD)	57
c. Nutrient salts	60
1. Ammonia (NH ⁺ ₄)	60
2. Nitrite (NO 2)	63
3. Nitrate (NO-3)	66
d. Heavy metals in water	69
1. Iron (Fe)	69
2. Zinc (Zn)	72
3. Copper (Cu)	75
4. Cadmium (Cd)	78
5. Manganese (Mn)	81
6.Lead (Pb)	84
C. Study of plankton in Water	87
a.Phytoplankton in water	87
b.Zooplankton in water	107
II. Fish Analysis	120
A. Bioaccumulation of heavy metals in the muscles of fish	120
a. Iron (Fe)	120
b. copper (Cu)	120
c.Lead (Pb)	120
d. Manganese (Mn)	121
e. Zinc (Zn)	121
f. Cadmium (Cd)	121

Dist of contents

Title	Page No.
B. Histopathological studies	126
a. Skin and muscles	126
b. Liver	140
C. Ovary	152
C.Histochemical investigation of muscles protein in fish Statistical analysis	166 173
Discussion	
SUMMARY AND CONCLUSION	
REFERENCES	
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

Code	Name
μg	Microgram
APHA	American public Health Association
BOD	Biological Oxygen Demand
Bs	Blood sinusoids
Cd	Cadmium
Cm	Centimeter
Cn	Congestion
COD	Chemical Oxygen Demand
Cu	Copper
D	Degeneration
Di	Dilation
DO	Dissolved Oxygen
Dr	Dermal layer
\mathbf{E}	Edema
EC	Electrical Conductivity
Ed	Epidermal layer
Ep	Epithelial layer
Fb	Fibrosis
Fe	Iron
Ft	Fatty degeneration
Gm	Gram
H	Hepatocytes
H_2SO_4	Sulfuric acid
$HClO_4$	Perchloric acid
Hd	Hypoderm
Hn	Hemosidrin
HNO_3	Nitric acid
Нр	Hyperplasia
Hr	Hemorrahge
KH $(IO_3)_2$]	Potassium bi-iodate
KI	Potassium iodide
Km	Kilometer

De list of Albreviations

Code	Name
L	Liter
LS	Longitudinal Section
Mg	Milligram
Ml	Milliliter
Mn	Manganese
N	Normality
N	Necrosis
NaOH	Sodium hydroxide
NED	1-Naphthyl Ethylenediamine Dihydrochloride
Ng	Nanogram
NH_4^+	Ammonia
NO ₂	Nitrite
NO ₃	Nitrate
P	Parasitic form
PCA	Principal Component Analysis
Pb	Lead
pН	Hydrogen Ion Concentration
PK	Pyknosis
S	Separation
TDS	Total dissolved Solids
Th	Thickness
VS	Vertical Section
WHO	World Health Organization
Zn	Zinc

LIST OF TABLES

Tables	Title of Tables	Page
(1)	Seasonal variation of water temperature (⁰ C) in the studied areas from autumn 2016 to summer 2017.	40
(2)	Seasonal variation of Electrical Conductivity (EC) m mhos/cm) in the studied areas from autumn 2016 to summer 2017.	43
(3)	Seasonal variation of Transparency (cm) in the studied areas from autumn 2016 to summer 2017.	46
(4)	Seasonal variation of Hydrogen Ion Concentration (pH) in the studied areas from autumn 2016 to summer 2017.	49
(5)	Seasonal variation of Dissolved oxygen (mg/l) in the studied areas from autumn 2016 to summer 2017.	52
(6)	Seasonal variations of Biochemical Oxygen Demand (mg/l) in the studied area from spring 2012 to winter 2013.	55
(7)	Seasonal variation of Chemical oxygen demand (mg/l) in the studied areas from autumn 2016 to summer 2017.	58
(8)	Seasonal variation of ammonia (mg/l) in the studied areas from autumn 2016 to summer 2017.	61
(9)	Seasonal variation of nitrite ($\mu g/l$) in the studied areas from autumn 2016 to summer 2017.	64
(10)	Seasonal variation of nitrate ($\mu g/l$) in the studied areas from autumn 2016 to summer 2017.	67
(11)	Seasonal variation of iron (mg/l) of water samples in the studied areas from autumn 2016 to summer 2017.	70
(12)	Seasonal variation of Zinc (mg/l) in the studied areas from autumn 2016 to summer 2017.	73
(13)	Seasonal variation of copper (mg/l) in the studied areas	76

De list of Tables

Tables	Title of Tables	Page
	from autumn 2016 to summer 2017.	0
(14)	Seasonal variation of cadmium (mg/l) in the studied areas from autumn 2016 to summer 2017.	79
(15)	Seasonal variation of manganese (mg/l) in the studied areas from autumn 2016 to summer 2017.	82
(16)	Seasonal variation of lead (mg/l) in the studied areas from autumn 2016 to summer 2017.	85
(17)	The distribution of total phytoplankton (cell x 104) at different sites during the four seasons.	89
(18)	The average densities of Bacillariophyceae species (cell x 104) during the four seasons.	92
(19)	The average densities of Bacillariophyceae species (cell x 104) at diffrent sites.	93
(20)	The average densities of Cyanophyceae species (cell x 104) during the four seasons.	95
(21)	The average densities of Cyanophyceae species (cell x 104) at different sites.	96
(22)	The average densities of Chlorophyceae species (cell x 104) during the four seasons.	99
(23)	The average densities of Chlorophyceae species (cell x 104) atdiffrent sites.	100
(24)	The average densities of Euglinophyceae species (cell x 104) during the four seasons.	102
(25)	The average densities of Euglinophyceae species (cell x 104) at different sites.	103
(26)	The average densities of Dinophyceae species (cell x 104) during the four seasons.	105
(27)	The average densities of Dinopyceae species (cell x 104) at different sites.	105

Tables	Title of Tables	Page
(28)	The distribution of total zooplankton at different sites during the four seasons.	109
(29)	The average densities of Rotifera species during the four seasons.	112
(30)	The average densities of Rotifera species at different sites.	113
(31)	The average densities of Copepoda species during the four seasons.	116
(32)	The average densities of Copepoda species at different sites	116
(33)	The average densities of Cladcera species during the four seasons.	118
(34)	The average densities of Cladcera species at different sites.	118
(35)	Seasonal variation of heavy metals concentration ($\mu g/g$ dry wt.) in fish muscles of Oreochromis niloticus in the studied areas from autumn 2016 to summer 2017.	122
(36)	Pearson's correlation matrix between water quality parameters and phytoplankton groups during the study period.	175
(37)	Pearson's correlation matrix between water quality parameters and zooplankton groups during the study period.	177
(38)	Pearson's correlation matrix between heavy metals and phytoplankton groups during the study period.	180
(39)	Pearson's correlation matrix between heavy metals and zooplankton groups during the study period.	182
(40)	Pearson's correlation matrix between heavy metals in water and fish during the study period.	185