

Value of E-test in the Determination of Synergistic Antimicrobial Combinations Active against Multi-Drug Resistant Enterobacteriacae

Thesis

Submitted for Partial Fulfilment of MD Degree in **Clinical Pathology**

By

Marwa Ramadan Mohamed Abd-Elhalem

M.B.B.Ch

Master of Clinical Pathology Faculty of Medicine - Ain Shams University

Under Supervision of

Professor / Névine Nabil Kassem

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor/ Ghada Abdel-Wahed Ismail

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Professor / Hala Mahmoud Hafez

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Assistant Professor /Fatma Alzahraa Mohamed Gomaa

Assistant Professor of Microbiology and Immunology Faculty of Pharmacy - Alazhar University

Doctor /Noha Alaa EL-Din Mohammed Fahim

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2019

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to **Professor** / **Mévine Mabil Kassem**, Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to **Professor**/ **Ghada Abdel-Wahed Ismail**, Professor of Clinical Pathology,
Faculty of Medicine, Ain Shams University, for her sincere efforts, fruitful encouragement.

I am deeply thankful to Assistant Professor / Hala Mahmoud Hafez, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Really I can hardly find the words to express my gratitude to Assistant Professor / Fatma Alzahraa Mohamed Gomaa, Assistant Professor of Microbiology and Immunology, Faculty of Pharmacy, Alazhar University, for her supervision, continuous help.

Thanks to **Doctor** / **Moha Alaa & L-Din Mohammed Fahim**, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her encouragement throughout this work and tremendous effort.

Marwa Ramadan Mohamed Abd-Elhalem

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	8
Introduction	1 -
Aim of the Work	14
Review of Literature	
Antimicrobial Resistance	15
■ Multidrug Resistant (MDR) Enterobacteriacae	38
■ Treatment Options for MDR <i>Enterobacteriacae</i>	48
■ Laboratory Methods Used to Assess the Activity o Antimicrobial Combinations	
Prevention and Control of Antimicrobial Resistant Bacteria	
Materials and Methods	79
Results	112
Discussion	132
Summary	143
Conclusion and Recommendations	149
References	153
Master Sheet	186
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Classification schemes for β-lactamase Susceptibility break points of vit system (AST GN73) cards	ek 2
Table (3):	MIC values of antibiotics according to (2015) for <i>Enterobacteriacae</i>	CLSI
Table (4): Table (5):	Results of the MIC by the Vitek2C system Results of the MIC as determined by broth microdilution test	y the
Table (6):	MIC results as determined by the limethod	E-test
Table (7):	Comparison between the Vitek2C an BMD test regarding the MIC result	ts for
Table (8):	amikacin, meropenem and ceftazidime Comparison between the Vitek2C an E-test method regarding the MIC re for amikacin, meropenem, ceftazidime	d the esults
Table (9):	ampicillin/sulbactam	he E- ts for
Table (10):	ampicillin/sulbactam	ns as BMD
Table (11):	Results of the antibiotic combination determined by the E-test method	
Table (12):	Comparison between the checker BMD method and the E-test m regarding the results of the st antibiotic combinations	board ethod udied

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Evolution of antimicrobial resistance	
Figure (2):	Phenotypic mechanisms of acq	
F' . (9)	antimicrobial resistance	
Figure (3):	Multidrug, extensively drug	
E: (4).	pandrug-resistant bacteria	
Figure (4):	Selective Pressure as a Primary Dr Force for Antimicrobial Resistance (A	
Figure (5).		
Figure (5):	Antimicrobial Synergy Study Checkerboard Assay	
Figure (6):	Time-kill analyses of test isolates	
Figure (7):	Double disk synergy test	
Figure (8):	E- test cross method	
Figure (9):	E-test strip experiments on antimic	
rigure (5).	combinations labeled A and B	68
Figure (10):	E-test fixed ratio method	
Figure (11):	E-test agar method	
Figure (12):	E-test minimum inhibitory concentr	
g (-=,-	minimum inhibitory concentr	
	method	
Figure (13):	Checkerboard Broth micodilution m	ethod
	for antimicrobial synergy	93
Figure (14):	Synergistic activity between ceftaz	idime
	and amikacin	97
Figure (15):	Additive effect between meropenen	
	amikacin	
Figure (16):	Indifferent effect between ceftazidim	
	amikacin	
Figure (17):	Detection of antimicrobial MIC by E-test.	
Figure (18):	The setup of an agar plate for l	
	combination testing	105

Tist of Figures cont...

Fig. No.	Title Pag	je No.
Figure (19):	Combination E-test strips between amikacin and meropenem showing synergy.	g
Figure (20):	Combination E-test strips between amikacin and ampicillin/ sulbactant showing additive	n n
Figure (21):		n g
Figure (22):	Percent of MDR and XDR among Enterobacteriacae.	g
Figure (23):		\mathbf{R}
Figure (24):	The most commonly identified MDI species.	
Figure (25):	MIC results of the studied isolates a determined by the VITEK 2 Compact system.	s t
Figure (26):	Results of the MIC as determined by th broth microdilution test.	e
Figure (27):	MIC results as determined by the E-tes method.	t
Figure (28):	Results of the antibiotic combination a determined by the checkerboard BMI method.	s O
Figure (29):		s

Tist of Abbreviations

Abb.	Full term
ACT	
	Amikacin
<i>AME</i>	Aminoglycoside modifying enzyme
-	Antimicrobial resistance
<i>AST</i>	Antimicrobial susceptibility test
BC	Bacillus cereus
BLICs	Beta lactamase inhibitors
<i>BMD</i>	Broth micro-dilution
<i>CA</i>	Categorical agreement
<i>CARB</i>	Carbenicillinase
<i>CAZ</i>	Ceftazidime
<i>CDC</i>	Centers for Disease Control and Prevention, United States
<i>CFU</i>	Colony forming unit
CGB-1	
<i>CLSI</i>	Clinical Laboratory Standards Institute
	Cephamycins
<i>CphA</i>	Aeromonas hydrophila
<i>CRE</i>	Carbapenem-resistant Enterobacteriaceae
<i>CRKP</i>	Carbapenem-resistant Klebsiella pneumoniae
<i>CSF</i>	
	Active on cefotaxime
DHA	Dhahran hospital
	Deoxyribonucleic acid
E. coli	Escherichia coli

Tist of Abbreviations cont...

Abb.	Full term
F clonege	Enterobacter cloacae
	European Antimicrobial Resistance Surveillance Network
<i>EDTA</i>	Ethylenediamine tetraacetic acid
ESBL	Extended-spectrum β -lactamase
	European Society of Clinical Microbiology and Infectious Diseases
<i>E-test</i>	Epsilometer
EU/EEA	European Union / European Economic Area
EUCAST	European Committee on Antimicrobial Susceptibility Testing
FDA	Food and Drug Administration
FICI	Fractional inhibitory concentration index
FOX	Cefoxitin
GES	Guiana-extended spectrum
<i>GIM</i>	German imipenemase
GNB	Gram negative bacteria
HAI	Healthcare associated infection
HCW	Healthcare worker
<i>HGT</i>	Horizontal gene transfer
hr	Hour
<i>I</i>	Intermediate
<i>ICU</i>	Intensive care unit
<i>IMI</i>	Imipenem-hydrolysing β -lactamases
INDs	Chryseobacterium indologenes
<i>Ipm</i>	Active on imipenem
<i>KPC</i>	Klebsiella pneumoniae carbapenemase
L1	$Stenotrophomonas\ maltophilia,$

Tist of Abbreviations cont...

Abb.	Full term
<i>LAT</i>	Latamovof
Log	•
	Long-term acute care centers
	. Long-term acute cure centers . Long-term care facility
	. Long-term care facility . Metallo-β-lactamase
	•
	Multidrug-resistant
ME	-
MEM	-
MHA	_
	Muller hinton broth
	Minimum inhibitory concentrations
<i>MiE</i>	
MIR	_
<i>MOX</i>	
<i>NC</i>	_
	New Delhi metallo-β-lactamase-1
<i>NmcA</i>	. Not metalloenzyme carbapenemase
<i>OXA</i>	Oxacillin hydrolyzing capabilities
<i>OXA</i>	Oxacillinase
<i>PC</i>	Positive control
PC1	Penicillinase 1
<i>PCR</i>	Polymerase chain reaction
<i>PDR</i>	. Pandrug-resistant
PER	Pseudomonas extended resistant
<i>R</i>	Resistant
S	. Sensitive
<i>SAM</i>	. Ampicillin / sulbactam
SD	Standard deviation

Tist of Abbreviations cont...

Abb.	Full term
SFH-1	Serritia fonticola
	Sulfhydryl variable
SIM	
	Serratia marcescens
<i>SPM</i>	Sao Paulo metallo-β-lactamase
<i>TEM</i>	Temoneira
<i>TKA</i>	Time kill assay
<i>TOHO</i>	Toho university
<i>TPs</i>	Transpeptidases
<i>USA</i>	United states of America
<i>UTI</i>	Urinary tract infection
VEB	Vietnamese extended-spectrum beta-
7.773.A	lactamases
V1M	Verona integron-encoded metallo-β- lactamase
WHO	World Health Organization
XDR	Extreme drug-resistant

Introduction

Because of the widespread use of antimicrobial drugs over several decades, antimicrobial resistance has become a serious global threat to the public health. Multidrug-resistant (MDR) bacteria have emerged as major pathogens causing serious infections in hospitalized patients, especially in critically ill patients (*Kim et al.*, 2016).

Infections caused by multidrug-resistant *Enterobacteriaceae* are associated with increased morbidity and mortality compared to infections caused by their susceptible counterparts. This is may be due to delay in providing active therapy, and also some alternative drugs are not as effective as first-line antibiotics (*Rottier et al.*, 2012).

As the prevalence of infections caused by MDR bacteria continues to increase, demand for combination antimicrobial therapies is growing rapidly since the development of new antimicrobial drugs cannot overcome the occurrence of antimicrobial resistance (*Kim et al.*, 2016).

The advantages of antimicrobial combination over monotherapy include a broader antibacterial spectrum, synergistic effects, and reduced risk for emerging resistance during therapy. Combination between synergistic antimicrobials enhance their antibacterial effects against multidrug-resistant strains (*Tängdén*, 2014).

A number of methods have been used to study the invitro synergy between antibiotics with the checker board titration and time-kill curve methods being the most widely described. Although the checkerboard titration method is a relatively easy test to perform, it only measures the inhibitory activity. On the other hand, the time-kill method of synergy testing assesses bactericidal activity but is time-consuming and labor-intensive (White et al., 1996).

The E-test is characterized by its simplicity compared to the above time kill or checkerboard assays, making it easy for routine use in a diagnostic laboratory, providing the clinician with rapid valuable information when critical decisions are needed (Arezzo et al., 2016).

AIM OF THE WORK

he aim of the present thesis is to determine the prevalence of multi-drug resistance (MDR) among *Enterobacteriacae* and to compare between the E-test and the checkerboard titration method as rapid in-vitro diagnostic tests that can help to determine the synergy between selected antimicrobial combinations thought to be active against multi-drug resistant *Enterobacteriacae*.

Chapter 1

ANTIMICROBIAL RESISTANCE

he development of antimicrobial resistance among gramnegative pathogens has been progressive and relentless. Pathogens of particular concern include extended-spectrum β -lactamase (ESBL) – producing *Enterobacteriaceae*, and carbapenem-resistant *Enterobacteriaceae* (CRE). Classic agents used to treat these pathogens have become outdated. Moreover, of the few new drugs available, many have already become targets for bacterial resistance (*Kanj and Kanafani*, 2011).

Mechanisms of Acquired Antimicrobial Resistance:

The evolution of resistant strains is a natural phenomenon that occurs through selection pressure on the micro organism population from the antibiotic (Figure 1) (*Chellat et al.*, 2016).

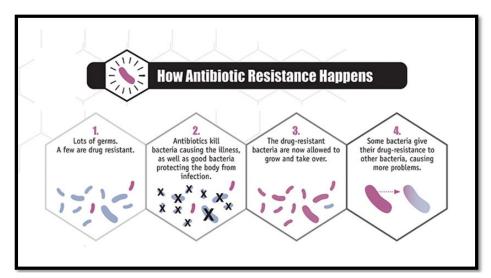


Figure (1): Evolution of antimicrobial resistance (Chellat et al., 2016).