

Ain Shams University
Faculty of Engineering
Computer and Systems Department

Image Categorization

A thesis submitted in partial fulfillment for the requirements of Masters of Science degree in Electrical Engineering

Submitted by:

Marwa Said Ahmed

B.Sc. of Electrical Engineering Computer and Systems Department Faculty of Engineering - Ain Shams University, 2012

Supervised by:

Prof. Ayman Wahba

Professor in Computer and Systems Engineering Department Faculty of Engineering - Ain Shams University

Dr Mohamed Nabil Moustafa

Professor in School of Computer Science and Engineering, American University in Cairo.

July, 2019

Cairo

Ain Shams University Faculty of Engineering Computer and Systems

Examiners Committee

Name: Marwa Said Ahmed Elsayed Ahmed ElShabrawy
Thesis: Image Categorization

Degree: Master of Science in Electrical Engineering

Title, Name and Affiliation	Signature
Prof. Hesham Arafat Ali Faculty of Engineering, Mansoura University Computer and Systems Department	
Prof. Hazem Mahmoud Abbas Faculty of Engineering, Ain Shams University Computer and Systems Department	
Prof. Ayman Mohamed Mohamed Wahba Faculty of Engineering, Ain Shams University Computer and Systems Department	
Date: / /2019	

Declaration of Authorship

I, Marwa Said, declare that this thesis titled, "Image Categorization" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others,
 I have made clear exactly what was done by others and what I have
 contributed myself.

Signed:		
Date:		

Researcher Data

Name : Marwa Said Ahmed

Date of birth : 21 November 1989

Place of birth : Cairo, Egypt

Last academic degree : Bachelor of Electrical Engineering

Field of specialization : Computer and Systems

University issued the degree: Ain Shams University

Date of issued degree : July 2012

Current job : Instructor at NTI

Thesis Summary

This thesis presents an approach of applying image categorization on a medical image data-set. Image categorization helps recognize categories of objects, through training a classifier for those classes. One of the methods for achieving this task is image classification using convolutional neural network. Another idea of classifying image can be done through instance segmentation where objects of interest will be segmented and classified at the same time.

We target classifying different cervix types. To do so we compared two different pipelines for achieving this purpose and then decide which of them is better than the other. We compare the pipeline of instance segmentation which gives the class of the image as one of its outputs beside detecting the object with a bounding box and the mask of the object of interest. The second approach to is train a vanilla convolutional neural network with the bounding boxes detected from the previous pipeline, those networks have shown good results on Imagenet and COCO dataset, so we chose them as our second approach.

We used the dataset provided by Intel & MobileODT Cervical Cancer Screening competition on Kaggle. It was a dataset of 3 different types of cervices and it was required to find a method to classify them.

Using instance segmentation gave better accuracy than using the classification pipeline solely.

We achieved and accuracy of about 62% with first approach compared to 55% with the second method.

Key words: Convolutional Neural Network, Cervical Cancer, Instance Segmentation

Acknowledgements

All praise to ALLAH, the lord of the world and most Merciful, who taught us what we didn't knew. I would like to thank GOD for giving me the chance, strength and ability to complete and finish this work.

It is my pleasure to express my gratitude to my supervisors, Professor. Ayman Wahba and Professor Mohamed Moustafa for their patience, guidance, insightful thoughts and useful discussions. They supported me through this thesis with their knowledge and encouragement, where without their support this work wouldn't have successfully completed. It is an honor to work with them.

I would like also to thank Professor Mohamed Watheq for his assistance and great deal of help he supported me with.

Also I would like to thank my colleagues Rasha Samir, Ibrahim Gomaa and Shaimaa Badr for helping me in my thesis and publishing my work.

I cannot find the appropriate words to thank my parents and my brothers for their encouragement to start and complete this work and my husband for his help and support, they all had great confidence in me.

Last but not least, I thank my family and friends who have endured this long process with me while always offering support and love.

Marwa Said Ahmed

Computer and Systems Engineering Department Faculty of Engineering Ain Shams University Cairo, Egypt 2019

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING COMPUTER AND SYSTEMS DEPARTMENT

Abstract

Faculty of Engineering
Computer and Systems Department

Masters of Science degree in Electrical Engineering

Image Categorization

by Marwa SAID

This thesis presents an approach of applying image categorization on a medical image data-set. Image categorization helps recognize categories of objects, through training a classifier for those classes. One of the methods for achieving this task is image classification using convolutional neural network. Another idea of classifying image can be done through instance segmentation where objects of interest will be segmented and classified at the same time.

We target classifying different cervix types. To do so we compared two different pipelines for achieving this purpose and then decide which of them is better than the other. We compare the pipeline of instance segmentation which gives the class of the image as one of its outputs beside detecting the object with a bounding box and the mask of the object of interest. The second approach to is train a vanilla convolutional neural network with the bounding boxes detected from the previous pipeline, those networks have shown good results on Imagenet and COCO dataset, so we chose them as our second approach.

We used the dataset provided by Intel & MobileODT Cervical Cancer Screening competition on Kaggle. It was a dataset of 3 different types of cervices and it was required to find a method to classify them. Using instance segmentation gave better accuracy than using the classifica-

tion pipeline solely. We achieved and accuracy of about 62% with first approach compared to 55% with the second method.

Contents

Do	eclara	tion of Authorship	iii
A	ckno	wledgements	v
Al	bstrac	et e	vii
1	Intr	oduction	1
	1.1	Overview of Image segmentation and classification	3
	1.2	Challenges	6
	1.3	Objectives and Methodology Overview	6
	1.4	Thesis Structure	6
2	Stat	e of the Art	7
	2.1	Convolutional Neural Network	7
		2.1.1 What are Neural Networks?	7
		2.1.2 Anatomy of Convolutional neural network	9
		2.1.3 subsection heading	13
		2.1.4 subsection heading	18
	2.2	section heading	21
		2.2.1 First stage	21
		2.2.2 Second stage	23
3	Proj	posed Method	25
	3.1	Mask R-CNN for image segmentation	25
	3.2	CNNs for image classification	37
4	Exp	erimental Results	39
	4.1	Data-set Preparation	39
	4.2	Experiments	42
		4.2.1 Results using Mask R-CNN for Instance segmentation	42
		4.2.1.1 Resnet101 as Backbone	42
		4.2.1.2 Resnet50 as Backbone	45
		4.2.2 Classification Using CNN	47
		4.2.2.1 ResNet50	47
		4.2.2.2 MobileNet	49
	4.3	Summary of Accuracy and Loss	51
	4.4	Time taken for Training	51

5	Con	iclusion and Future Work	53		
	5.1	Conclusion	53		
	5.2	Future Work	53		
Bi	Bibliography				

List of Figures

1.1	Cervix Types
1.2	In top left image is Image classification, in top right one is object detection, while bottom left image shows semantic seg-
	mentation, and instance segmentation shown in bottom right image)[13]
2.1	Neural Network[15]
2.2	Convolutional Neural Network[15]
2.3	Convolutional Layer[15]
2.4	Max pooling Layer[15]
2.5	Convolutional neural network layers[16]
2.6	Effect of going deep in networks on its Performance[17] 13
2.7	Shallow network and its counterpart deeper variant both giv-
	ing the same output [18] $\dots \dots \dots$
2.8	Identity mapping in Residual blocks[18]
2.9	Plain VGG and VGG with Residual Blocks[17] 16
	Regular Convolution Operation
	Depth-wise convolution operation
	Point-wise convolution operation
	The framework of Mask R-CNN[7]
	Three anchor boxes (dotted) and the scale and scale applied to
	them to fit the object precisely (solid)
2.15	Illustration of stage 2 without the mask[22]
3.1	Anchors at different sizes and scales
3.2	Mask R-CNN pipeline
3.3	Type 1 cervix
3.4	Top 100 scored anchors from running RPN
3.5	Top 50 scored anchors after refinements (left) and clipping(right)
	to image boundaries
3.6	Anchors after applying non-maximum suppression 31
3.7	Anchors classified to Background(dotted) and classes(solid)
	with confidence scores
3.8	Regions of interest after bounding box refinement
3.9	Final detections after applying per class non-maximum sup-
	pression and filtering low confidence score
3.10	The class of the cervix with its confidence score and bounding
	box applied
3.11	Final output of the Mask R-CNN; Mask, Bounding Box and
	Label

3.12	Classification pipeline approach	37
4.1	Samples of green images in data-set	39
4.2	Samples of unrelated images to the data-set	39
4.3	Samples of unclear images in the data-set	40
4.4	Sample of hand labelled mask on an image	41
4.5	Total loss of fine-tuning all parameters of Mask R-CNN with	
	ResNet101 as backbone	43
4.6	Classification loss of fine-tuning all parameters of Mask R-	
	CNN with ResNet101 as backbone	43
4.7	Total loss of fine-tuning last couple of mrcnn layers with ResNet10	01
	as Backbone	44
4.8	Classification loss of fine-tuning last couple of mrcnn layers	
	with ResNet101 as Backbone	44
4.9	Total loss of fine-tuning all parameters of Mask R-CNN with	
	ResNet50 as backbone	45
4.10	Classification loss of fine-tuning all parameters of Mask R-	
	CNN with ResNet50 as backbone	45
	ResNet50 with Adam Solver	47
	ResNet50 with SGD solver	48
	MobileNet with Adam Solver	49
4.14	MobileNet with SGD solver	50

List of Tables

2.1	Top-1 error on ImangeNet validation data-set	17
4.1	Test Loss and Accuracy of all trained models	51