

Ain Shams University Faculty of Medicine Department of Medical Microbiology and Immunology

Phenotypic detection of Carbapenem Resistant Enterobacteriaceae isolates and assessment of their susceptibility to the novel Ceftazidime-Avibactam combination.

Thesis

For Partial Fulfillment of **Master Degree** in **Medical Microbiology and Immunology**

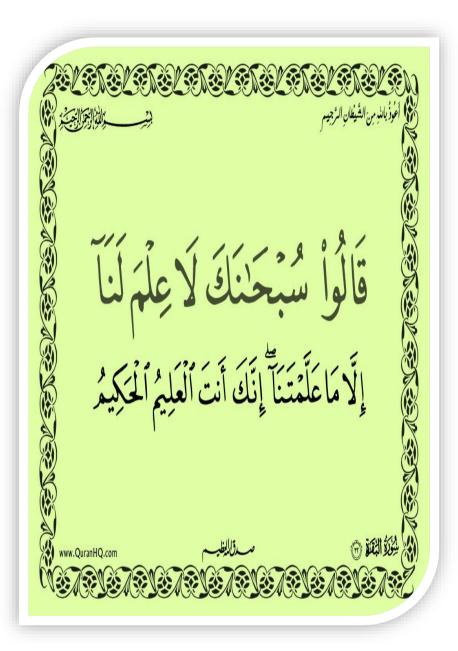
By Dalia Mohamed Ahmed Ibrahim

M.B.B.Ch., Faculty of Medicine Ain Shams University

Supervised by

Prof. Dr. Shereen El-Sayed Mohamed Taha

Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University


Dr. Shimaa Ahmed Abdel Salam

Lecturer of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Abd El Aziz Abd Allah Abd El Aziz

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2019

Acknowledgement

First of all, all gratitude is due to **ALLAH Almighty** for blessing this work, until it has reached its end, as a part of His generous help, throughout my life.

Really I can hardly find the words to express my gratitude to Prof.Dr. Shereen El-Sayed Mohamed Taha, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to Dr. Shimaa Ahmed Abdel Salam, Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her tireless guidance, support and for her patience to get this work into light.

I cannot forget the great help of Dr. Abd El AZIZ Abd Allah Abd El Aziz, Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his support.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Dalia Mohamed Ahmed Ibrahim

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Figures	iv
List of Tables	vi
Introduction	1
Aim of the Work	3
Review of Literature	
Enterobacteriaceae	4
Carbapenems	22
Carbapenem resistant enterobacteriaceae	26
Ceftazidime-avibactam	55
Patients and Methods	63
Results	78
Discussion	88
Summary	94
Conclusion	96
Recommendation	97
References	98
Summary in Arabic	·····

List of Abbreviations

Abbr. Full-term

AK : Amikacin.

AM : Ampicillin.

AMC : Amoxicillin / calvulinic acid.

ATM: Aztreonam.

ATP : Adenosine triphosphate.

CAZ : Ceftazidime.

CDC: The Center for Disease Control and Prevention.

CDT : Combined Disc Test.

CIP : Ciprofloxacin.

CLED: Cystine-Lactose-Electrolyte-Deficient-medium.

CLSI: Clinical and Laboratory Standards Institute.

CMS: Colistin methane sulphonate.

CP : Contact Precaution.

CRE: Carbapenem-resistant *Enterobacteriaceae*.

CSU: Catheter-stream urine.

CTX: Cefotaxime.

EDTA: Ethylene diamine tetraacetic acid.

ESBL : Extended-spectrum β -lactamases.

ETA: Endotracheal aspirate.

FEP: Cefepime.

FOX : Cefoxitine.

GN: Gentamycin.

HICPAC: The Healthcare Infection Control Practices Advisory Committee.

ICU: Intensive care units.

IMP : Imipenemase.

IV : Intravenous

KPC : *Klebsiella pneumoniae* carbapenemase.

LPS: Lipopolysaccharide.

MBLs: Metallo-beta-lactamases.

mCIM: Modified carbapenem inactivation method.

MDR: Multidrug resistant.

MEM: Meropenem.

MHA : Muller Hinton agar.

MHT: Modified Hodge test.

MIC: Minimal inhibitory concentration.

MSU: Mid-stream urine samples.

NDM : New Delhi metallo- β -lactamase.

NPV: Negative predictive values.

OMP: Outer membrane porines.

OXA: Oxacillinases.

PBPs: Penicillin-binding proteins.

PDR: Pandrug-resistant.

PPV: Positive predictive values.

SD: Standard deviation.

SHEA: The Society for Healthcare Epidemiology of

America

SPSS: Statistical package for Social Science.

SXT : Sulphamethoxazole / Trimethoprim.

TPZ: Piperacillin / Tazobactam.

US FDA: United States Food and Drug Administration.

UV : Ultraviolet.

VAP: Ventilator-associated pneumonia.

VIM : Verona integron metallo- β -lactamase.

WHO: World Heath Organization.

XDR: Extensively-drug resistant.

List of Figures

Figure No	o. Title Page N	lo.
Figure (1):	FimH is a bacterial adhesin that helps bacteria such as <i>Escherichia coli</i> to bind to host cells and their receptors	. 12
Figure (2):	Chemical difference between penicillin and carbapenem;	. 22
Figure (3):	Disc diffusion method	. 31
Figure (4):	Modified Carbapenem Inactivation Method	. 33
Figure (5):	Modified Hodge test (MHT).	. 34
Figure (6):	Positive Carba NP test	. 36
Figure (7):	EDTA disk synergy test (EDST)	. 38
Figure (8):	Positive Double disk synergy test	. 39
Figure (9):	MBL(IP/IPI)E-Test	. 41
Figure (10):	Steps of PCR reaction	. 43
Figure (11):	Chemical structure of ceftazidime	. 57
Figure (12):	Chemical structure of Avibactam	. 58
Figure (13):	A plate of MacConkey's agar medium cultured with sputum sample using ordinary swab showing lactose fermenting large mucoid colonies of <i>klebsiella pneumoniae</i>	. 66
Figure (14):	A plate of Muller-Hinton agar inoculated by <i>klebsiella pneumoniae</i> indicates carbapenem resistance.	. 68
Figure (15):	A plate of Muller-Hinton agar inoculated by <i>klebsiella pneumoniae</i> showing multidrug resistance.	. 70

Figure (16):	A plate of Muller-Hinton agar inoculated by <i>E.coli</i> ATCC® 25922 showing Carbapenemase negative result	.72
Figure (17):	A plate of Muller-Hinton agar inoculated by <i>E.coli</i> ATCC® 25922 showing Carbapenemase positive result	73
Figure (18):	A plate of Muller-Hinton agar inoculated by <i>E.coli</i> ATCC® 25922 subjected to routine disk diffution test quality control	73
Figure (19):	Plate of MHA inoculated with CRE with ceftazidime- avibactam MIC (0.38) $\mu g/ml$. This indicates susceptibility to CZA	75
Figure (20):	Plate of MHA inoculated with CRE with meropenem no zone of inhibition, this indicate resistance to meropenem.	76
Figure (21):	The distribution of the <i>Enterobacteriaceae</i> isolates in different clinical samples	79
Figure (22):	The percentage of CRE infections among the <i>Enterobacteriaceae</i> isolates	80
Figure (23):	The distribution of sensitive and resistant strains of <i>Enterobacteriaceae</i> isolates	81
Figure (24):	In-vitro susceptibility pattern of CRE isolates to different tested antimicrobials	83
Figure (25):	The number of Carbapenemase producing CRE isolates using mCIM	84
Figure (26):	Antimicrobial susceptibility of CRE isolates to Meropenem E-test.	85
Figure (27):	Antimicrobial susceptibility of CRE isolates to Ceftazidime- avibactam E-test	86

List of Tables

Table No	. Title	Page No.
Table (1):	Zones of inhibition of antibiotics	69
Table (2):	MIC values of antibiotics	75
Table (3):	The percentage of the Enterobaccisolates	
Table (4):	The distribution of susceptible and strains of <i>Enterobacteriaceae</i> iso carbapenems	olates to
Table (5):	The distribution of CRE isolates in clinical samples.	
Table (6):	In-vitro susceptibility pattern of CRE to different antimicrobials	
Table (7):	Co-ordance between Meropenem E-modified CIM	
Table (8):	Sensitivity and Specificity of modified	d CIM 85
Table (9):	Number of CRE isolates inhibited by concentrations of ceftazidime- avibact	

Introduction

Enterobacteriaceae are common causes of both community-acquired and hospital acquired infections including urinary tract, bloodstream, and lower respiratory tract infections (Wang, et al. 2015).

Dissemination of infection by extended-spectrum β -lactamases (ESBL) and AmpC β lactamases producing *Enterobacteriaceae* has led to increased use of carbapenems and the emergence of carbapenem-resistant *Enterobacteriaceae* (*Baran and Aksu*, 2016).

The mechanisms underlying carbapenem resistance in *Enterobacteriaceae* are complex and include both the production of carbapenem hydrolyzing lactamases (carbapenemase-producing CRE [CP-CRE]) and resistance due to the presence of a combination of other factors (non-CP-CRE), such as hyperproduction of AmpC lactamases or ESBLs combined with altered membrane permeability (*Pierce et al., 2018*).

The resistance among *Enterobacteriaceae* represents a major public health problem and has become a leading cause of morbidity and mortality worldwide (*Goodlet et al., 2016*). Their identification is of primary importance for the choice of appropriate therapeutic schemes and the implementation of proper infection control measures (*HrabaÂk et al., 2014*).

To prevent spread of carbapenemase producers, rapid detection of these bacteria has become imperative (*Nordmann*, 2014). A new straight forward inexpensive phenotypic test called mCIM was developed to detect carbapenemase production in *Enterobacteriaceae* (*Pierce et al.*, 2017). It is currently recommended by Clinical and Laboratory Standards Institute (CLSI) for detection of carbapenemase among *Enterobacteriaceae* clinical isolates. (*Yu et al.*, 2018).

This method showed high concordance with results obtained by PCR to detect genes coding for the carbapenemases KPC, NDM, OXA-48, VIM, IMP and OXA-23 (*Nordmann et al.*, 2012).

Emergence of *enterobactericeae* producing carbapenemases resulting in broad resistance to most beta lactam antibiotics including last line carbapenems (*Morrill et al.*, 2015).

Ceftazidime-avibactam is the combination of the established third-generation cephalosporin ceftazidime, with the novel non- β -lactam β - lactamase inhibitor avibactam (Li et al., 2015). Avibactam inhibits a broad range of serine β -lactamases including Ambler class A (ESBL and KPC), class C (AmpC) and some class D (OXA-48) enzymes (Ehmann et al., 2013). In combination with ceftazidime, avibactam restores activity of ceftazidime against a number of clinically relevant β -lactamase-producing Gram-negative pathogens causing serious infections (EUCAST, 2017).

Aim of the Work

The aim of this study was to evaluate the mCIM as a new method for phenotypic detection of carbapenemase-producing CRE and to test the in vitro susceptibility of the isolates to ceftazidime-avibactam.

I. Enterobacteriaceae

The Enterobacteriaceae is a very large family of Gramnegative bacilli that are similar in morphology and cultural 130 different characters. More than species of Enterobacteriaceae exist in 32 different genera. This family Salmonella, includes. Escherichia. Shigella, Klebsiella, Citrobacter, Proteus, Yersinia and Serratia (Kayser, 2005). Members of this family can be differentiated from each other by biochemical reactions and antigenic structure (Cullimore, *2000*).

General characteristics:

They are non-spore forming, facultative anaerobic rods or coccobacilli ranging from 0.3 to 1.0 mm long, motile by means of peritricate flagella except *Klebsiella and Shigella* spp that are non-motile (*Abbott*, *2007*).

They are oxidase negative, catalase positive, ferment glucose to produce lactic acid only or lactic acid with gas, reduce nitrate to nitrite, can grow on ordinary media as well as on selective and differential media e.g. MacConkey agar (*Ananthanarayan and Paniker*, 2006).

Classification:

- 1. According to lactose fermentation (Janda and Abbott, 2008):
 - a) Lactose fermenter: e.g. E.coli, Klebsiella, and Citrobacter.
 - b) Lactose non-fermenter: e.g. Salmonella, Shigella, Proteus and Yersinia.
 - c) Late lactose fermenter: e.g. Shigella sonnei.

2. According to pathogenicity:

a) True pathogens (Levinson, 2006):

Primary pathogenic strains are Salmonella, Shigella, and Yersinia species.

- Typhoid fever and enterocolitis are caused by *Salmonella* species.
- Bacillary dysentry is caused by *Shigella* species.
- Plague, enterocolitis and mesenteric adenitis are caused by *Yersinia* species.

b) Commensals:

Most of *Enterobacteriaceae*, such as *E.coli* are part of gut flora and do not cause disease exept in case of inadequate host defenses or when they reach tissues outside their natural habitat (*Carrol and Hobden, 2010*).