

Ain Shams University Faculty of Pharmacy Microbiology and Immunology Department

Effect of gamma radiation and some antibacterial agents on cyclomodulin associated effects in some uropathogenic *E. coli* isolates

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master Degree

In

Pharmaceutical Sciences (Microbiology and Immunology)

By

Radwa Noureldin Nabawy Morgan

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2013

Ain Shams University Faculty of Pharmacy Microbiology and Immunology Department

Effect of gamma radiation and some antibacterial agents on cyclomodulin associated effects in some uropathogenic *E. coli* isolates

A Thesis

Submitted in Partial Fulfillment of the Requirements for the **Master Degree** in Pharmaceutical Sciences (Microbiology and Immunology)

By Radwa Noureldin Nabawy Morgan

Bachelor of Pharmaceutical Sciences, Faculty of Pharmacy, Ain Shams University, 2013

Under supervision of

Prof. Dr. Mohammad Mabrouk Aboulwafa

Professor and Department Head of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Prof. Dr. Hala Abdallah Farrag

Professor of Medical Microbiology and Head of Biotechnology Division, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA)

Dr. Sarra Ebrahim Saleh

Lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University

Acknowledgements

First, I express my sincere gratitude to Allah who overwhelmed me by his continuous grace and granted me the strength to complete this study, without his blessings my efforts would have gone astray.

I would like to thank and express my gratefulness to **Prof. Dr. Mohammad Mabrouk Aboulwafa**, Professor and Department Head of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, for his valuable follow up, continuous advice, guidance and thorough revision of the thesis and published articles.

Also, I would like to express my gratitude to **Prof. Dr. Hala Abdallah Farrag**, Professor of Medical Microbiology and Head of Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), for her continuous follow up, thorough revisions, advice and valuable guidance throughout my study.

Many thanks to **Dr. Sarra Ebrahim Saleh**, lecturer of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University for her support and great efforts during the execution of the practical work.

I would like to thank **Prof. Dr. Sahar Ismail**, Chairman of National Centre for Radiation Research and Technology (NCCRT), Egyptian Atomic Energy Authority (EAEA), for her encouragement and providing the necessary facilities.

My thanks are also extended to **Prof. Dr. Ahmed Shafiq**, my colleagues at the Drug Radiation Research Department, National center for Radiation Research and Technology (NCRRT) and at the Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, for their aid, help and support.

Finally, I would like to express my deep love and everlasting gratefulness to my Mother and My sister for their continuous

prayers, encouragement, motivation and sincere love and help. I shall also thank my friends for all the love and support.

Radwa Noureldin Nabawy Morgan

Contents

	Titles	Page
Abstr	ract	XV
Intro	duction	1
Litera	ature Review	6
1.	The association between infections and carcinogenesis	6
2.	Role of bacterial infections in carcinogenesis	8
3.	Cyclomodulins, their subgroups and functions	13
3.1.	Cyclomodulins that stimulate cellular proliferation	14
3.1.1.	Cytotoxin-associated gene A toxin, Cag A	14
3.1.2.	Cytotoxic necrotizing factor, Cnfs	15
3.1.3.	Pasteurella multocida toxin, PMT	18
3.2.	Cyclomodulins that stimulate cell cycle arrest	18
3.2.1.	Cytolethal distending toxin, CDT	19
3.2.2.	Cycle inhibiting factor, Cif	21
3.3.	Other inhibiting CMs	22
3.4.	Colibactin, the <i>pks</i> island encoded cyclomodulin	22
4.	Cytotoxic necrotizing factor-1, colibactin and	27
	association with cancer	
5.	Effect of the antibacterial agents subMICs on the	30
	bacterial virulence	
6.	Effect of the low doses of gamma radiation on the	33
	bacterial virulence	
Mate	rials and Methods	36
1.	Microorganisms	36
1.1.	Recovered bacterial isolates	36
1.2.	Reference strains	36
2.	Cell lines	37
3.	Chemicals	37

i

4.	Antibiotics sensitivity discs	38
5.	Kits/chemicals and reagents used in DNA manipulation techniques	39
6.	Instruments and Devices	40
7.	Media	41
7.1.	Readymade Media	41
7.2.	Blood agar	41
7.3.	Tissue culture media	41
8.	Buffers and solutions	42
8.1	Phosphate buffered saline (PBS)	42
8.2	Tris-EDTA (TE) buffer	42
8.3	Tris-borate (TBE) buffer	42
8.4	Giemsa stain solution	42
8.5	MTT solution	43
8.6	Antibacterial agents solutions	43
9.	Recovery, cultivation and maintenance of the	43
	bacterial isolates	
10.	Determination of hemolytic activity for the recovered	44
	E. coli isolates	
11.	Maintenance and preparation of mammalian cells for	44
	tissue culture experiments	
12.	Phenotypic detection of the cyclomodulins (CMs)	45
	produced by Uropathogenic E. coli (UPEC)	
12.1.	Detection of cytotoxic necrotizing factor 1 (Cnf 1)	45
12.1.1.	Bacterial growth and preparation of crude cell lysate of test isolates	45
12.1.2.	Detection of Cnf 1 in the crude cell lysates of the test	45
10.0	isolates	1.
12.2.	Detection of the <i>pks</i> island toxin, colibactin	46
12.2.1.	Preparation of the bacterial cell suspension	46

12.2.2.	Detection of colibactin production in the bacterial		
	cell suspension		
13.	Giemsa staining of treated mammalian cells	47	
14	Cytotoxicity assay using MTT	47	
15.	Molecular detection of cytotoxic necrotizing factor 1 (cnf 1) and colibactin encoding genes (clbA and clbQ) by PCR	48	
15.1.	PCR amplification and gel electrophoresis	48	
15.2.	Sequencing of the PCR products of <i>cnf 1</i> , <i>clbA</i> and <i>clbQ</i> genes	49	
15.3.	Bioinformatics analyses	50	
16.	In vivo study to observe the cytotoxic effect of the cyclomodulins harboring isolates (Cnf 1 and colibactin)	51	
16.1.	Rat ascending UTI model using UPEC isolates	51	
16.2.	Histopathological examination for the autopsied kidneys and bladders	52	
17.	Antimicrobial sensitivity testing	52	
18.	Testing the effect of exposure to subMICs of certain antibacterial agents and treatment with gamma radiation on cytotoxicity and the expression of three colibactin encoding genes for a selected UPEC isolate	52	
18.1.	Determination of minimum inhibitory concentrations (MICs) of different antibactorial agents	53	
18.2.	(MICs) of different antibacterial agents Irradiating the selected UPEC isolate	54	
18.2.1.	Gamma radiation source used	54	
18.2.2.	Preparation of the selected isolate broth culture	54	
18.3.	Effect of exposure to subMICs on the cytotoxicity for the selected isolate	54	
18.3.1.	Effect of exposure to subMICs on the bacterial cell suspension cytotoxicity of the selected isolate	54	
18.3.2.	Effect of exposure to subMICs on the crude cell lysate cytotoxicity of the selected isolate	55	

18.4.	Effect of gamma radiation treatment on the				
	cytotoxicity of the selected isolate				
18.5.	Cytotoxicity of cell suspension and crude cell lysate of the selected isolate treated with subMICs of certain antibacterial agents subMICs and gamma radiation	56			
18.6.	Testing the effect of exposure to antibacterial agents subMICs and treatment with gamma radiation on the expression of three colibactin encoding genes (<i>clbA</i> , <i>clbQ</i> and <i>clbM</i>) for the selected isolate	56			
18.6.1	Bacterial growth condition prior to RNA extraction	56			
18.6.2.	RNA extraction and purification	57			
18.6.3.	cDNA strand synthesis	58			
18.6.4.	Real time PCR (RT-PCR) setup	58			
19.	Statistical analyses	59			
Results		60			
1.	Recovery and identification of uropathogenic E. coli	60			
	(UPEC) isolates				
2.	Hemolytic activity of the recovered UPEC isolates	60			
3.	Phenotypic detection of cyclomodulins produced by	60			
	UPEC isolates				
3.1.	Phenotypic detection of Cnf 1	60			
3.2.	Phenotypic detection of colibactin	63			
4.	Molecular detection of cytotoxic necrotizing factor	65			
	(Cnf 1) and colibactin encoding genes in UPEC				
	isolates				
4.1.	Detection of cnf 1, clbA and clbQ encoding genes	65			
	among the tested <i>E. coli</i> isolates by PCR				
4.2.	Sequence analyses of <i>cnf1</i> , <i>clbA</i> and <i>clbQ</i> genes for a	69			
	selected <i>E. coli</i> isolate				
5.	Bioinformatics analyses of nucleotide sequences of <i>pks</i> island and amino acid sequences of its encoded proteins, Cnf 1 and Hly A	76			

5.1.	Nucleotide sequence analysis of 54 Kb colibactin	76			
	genomic island and amino acid sequences analyses of				
	its encoded proteins, Cnf 1 and Hly A				
5.2.	Distribution of colibactin pks genomic island and	76			
	cytotoxic necrotizing factor 1 among the bacterial				
	species				
5.3.	Relatedness and function of colibactin PKS proteins	78			
	among different bacterial species				
5.4.	Prevalence of different PKS encoded proteins, Cnf 1	79			
	and HlyA among different bacterial species				
6.	Detection of pathologic effects for certain selected	83			
	uropathogenic E. coli isolates expressing Cnf 1 and				
	colibactin in an in vivo animal model				
7.	Antimicrobial sensitivity pattern of uropathogenic <i>E</i> .	93			
	coli isolates harboring hlyA, cnf 1 and colibactin				
	(clbA and clbQ) against some antimicrobial agents				
8.	Testing the effect of exposure to subMICs of certain	96			
	antibacterial agents and treatment with gamma				
	radiation on the cytotoxicity of the selected isolate				
	and its expression of colibactin encoding genes				
8.1.	(clbA, clbQ and clbM) Minimum inhibitory concentrations (MICs) of some	96			
0.1.	Minimum inhibitory concentrations (MICs) of some	90			
	selected antibacterial agents against uropathogenic <i>E</i> .				
	coli isolats encoding HlyA, Cnf 1 and colibactin				
	(ClbA and ClbQ)				
8.2.	The effect of exposure to subMICs on the	97			
	cytotoxicity of the selected UPEC isolate				
8.3.	Effect of treatment with gamma radiation on the	97			
	cytotoxicity of the selected UPEC isolate				
8.4.	Effect of exposure to subMICs on the expression of	99			
	three colibactin encoding genes (clbA, clbQ and				
	<i>clbM</i>) by the selected UPEC isolate				
8.5.	Effect of gamma radiation treatment on the	101			
0.0.	expression of three colibactin encoding genes (<i>clbA</i> ,	101			
	clbQ and clbM) for the selected UPEC isolate				

Disc	eussion	104
1.	Phenotypic and genotypic detection of Cnf 1 and colibactin	104
2.	Pathologic effects associated with the isolates harbouring Cnf 1 and colibactin encoding genes (cnf $1^+clbA^+clbQ^+$)	105
3.	Bioinformatics analyses to explore the prevalence of Cnf 1 and colibactin among other related and un related bacterial species	106
4.	Antimicrobial sensitivity profile of Cnf 1 and colibactin producing isolates	107
5.	Effect of treatment with the subMICs of some antibacterial agents on the cytotoxicity and expression of colibactin	108
6.	Effect of treatment with low doses of gamma radiation on the cytotoxicity and expression of colibactin	111
Con	clusion	113
Summary		115
Refe	References	
Appendix		141
Ara	bic Summary	

List of figures

No.	Title		
1	Bacterial infections and the development of cancers	9	
2	The cell cycle phases and its regulators; cyclins and the CDK activity	12	
3	The cyclomodulins toxins and their mode of actions	14	
4	Cytotoxic necrotizing factor site of action inside the	17	
	eukaryotic cell		
5	Cytolethal distending toxin mode of action in the eukaryotic cells	20	
6	Cycle inhibiting factor mode of action inside the eukaryotic cell	22	
7	The proteins encoded by the <i>pks</i> island and their role in the colibactin synthesis i.e. "the colibactin assembly line"	25	
8	Exposure to pks^+ E. $coli$ induced cellular senescence and promoted tumor growth	29	
9	Morphological changes in <i>Vero</i> cells exhibited by the crude cell lysate of UPEC isolates	61	
10	Morphological changes in <i>Hep2</i> cells exhibited by	62	
10	the crude cell lysate of UPEC isolates	02	
11	Morphological changes in <i>Caco</i> ² cells exhibited by	63	
	the bacterial cell suspension of UPEC isolates		
12	Morphological changes in <i>Hep2</i> cells treated by the	64	
	bacterial cell suspension of UPEC isolates		
13	Agarose gel electrophoresis pattern for the PCR amplified products of the 3 tested genes for representative hemolytic <i>E. coli</i> isolates (70 β , 114 β , and 13 β) as compared to a non-hemolytic <i>E. coli</i> isolate (67) and the reference <i>E. coli</i> strains 28C.	65	
	Lanes M represent the molecular size marker of the DNA ladder.		
14	Agarose gel electrophoresis pattern for the PCR amplified products of the 3 tested genes for hemolytic $E.\ coli$ isolates (6 β , 4 β , 85 β and 5 β) and non-hemolytic $E.\ coli$ isolates (49, 63). Lanes M represent the molecular size marker of the DNA ladder.	66	