

Role of Musculoskeletal Ultrasound in Detection of Hemophilic Arthropathy

A Thesis

Submitted for Partial Fulfillment of Master Degree in Radiology

By

Salma Ehab Mohamed Elbastawisy M.B.B.Ch,

Under Supervision of

Prof. Dr. Hossam Moussa Sakr

Professor of Radiology Faculty of Medicine, Ain Shams University

Dr. Nermeen Nasry Keriakos

Lecturer of Radiology
Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2019

Acknowledgments

First and foremost, I feel always indebted to Allah, the Most Beneficent and Merciful who gave me the strength to accomplish this work,

My deepest gratitude to my supervisor, **Prof. Dr. Hossam Moussa Sakr,** Professor of Radiology, Faculty of Medicine, Ain Shams University, for his valuable guidance and expert supervision, in addition to his great deal of support and encouragement. I really have the honor to complete this work under his supervision.

I would like to express my great and deep appreciation and thanks to **Dr. Nermeen Nasry Keriakos**, Lecturer of Radiology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, and her patience in reviewing and correcting this work.

Special thanks to my **Parents**, my **Husband** and all my **Family** members for their continuous encouragement, enduring me and standing by me.

Salma Ehab Mohamed Elbastawisy

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
List of Cases	ix
Introduction	1
Aim of the Work	6
Review of Literature	
Anatomy of the Knee, Elbow & Ankle Join	its 7
Technique and Radiological Anatomy	25
Pathology of Hemophilia	57
Patients and Methods	84
Results	88
Illustrative Cases	100
Discussion	114
Summary	132
References	136
Arabic Summary	

List of Abbreviations

Abbr. **Full-term ACL Anterior Cruciate Ligament AMCL** Anterior bundle of the Medial Collateral Ligament **BMD Bone Mineral Density CET** Common Extensor Tendon **Clotting Factors Concentrates CFCs** Common Flexor Tendon **CFT** Cm² Square centimeters **H2O2** Hydrogen Peroxide HA Hemophilic Arthropathy Hemophilia Early Arthropathy Detection with **HEAD-US** Ultrasound **HJHS 2.1** Hemophilia Joint Health Score 2.1 IL Interleukin **ITB** Iliotibial Band **JADE** Joint Activity and Damage Exam LCL Lateral Collateral Ligament LS **Longitudinal Section** Lateral Ulnar Collateral Ligament LUCL MCL Medial Collateral Ligament Mm Millimeters **MMP** Matrix Metalloproteinases MRI Magnetic Resonance Imaging **MSK US** Musculoskeletal Ultrasound NO Nitric Oxide OA Osteoarthritis **OPG** Osteoprotegin Posterior Cruciate Ligament **PCL** PD Power Doppler **POC** Point-Of-Care Posterolateral rotatory Instability **PRLI**

Patients with Hemophilia

PwH

RA : Rheumtoid Arthritis RANK-L : RANK Ligand

RCL : Radial Collateral Ligament

SD : Standard deviation

SPSS : Statistical package for social science

TNF : Tumor Necrosis Factor
TS : Transverse Section

US : Ultrasound

USG : Ultrasonography

VEGF : Vascular-Derived Endothelial Growth FactorVEGFR : Vascular-Derived Endothelial Growth Factor

Receptor

vWD : Von Willebrand diseasevWF : Von Willebrand factor

WFH : World Federation of Hemophilia

List of Tables

Table No	o. Title	Page No.
Table (1):	Main anatomic structures depicted by and their related sonographic pattern	
Table (2):	Number and percentage distribution patients of hemophilic arthropathy account to their baseline characteristics	rding
Table (3):	Number and percentage distribution patients of hemophilic arthropaccording to their clinical presentation	oathy
Table (4):	Number and percentage distribution patients of hemophilic arthropathy account to their joints affected	rding
Table (5):	Number and percentage distribution patients of hemophilic arthropathy according to their ultrasonography finding	rding
Table (6):	Relationship between the joints affected their ultrasonography findings	
Table (7):	Relationship between the joints affected their US findings	
Table (8):	Relationship between different parameters in all the joints involved in disease and age-groups of the parexamined.	n the tients
Table (9):	Relationship between all examined j (normal and abnormal joints) and their parameters/findings	r US

Table (10):	Relationship between patients with normal and abnormal US findings according to their all joints	99
Table (11):	HEAD-US score (Hemophilia Early Arthropathy Detection with Ultrasound)	118
Table (12):	The items included in a number of MSK-US scanning protocols and scoring systems used in the assessment of HA	

List of Figures

Figure No	o. Title Page No.
Figure (1):	Left knee joint from behind, showing interior ligaments
Figure (2):	Head of right Tibia seen from above 10
Figure (3):	Osseous anatomy of the elbow
Figure (4):	Medial and lateral ligamentous stabilizers of the elbow
Figure (5):	Elbow anatomy
Figure (6):	Important bony landmarks and muscle origin and insertion points of the muscles and bones around the ankle
Figure (7):	The muscles, tendons, and retinaculae around the ankle joint
Figure (8):	The ankle joint ligaments
Figure (9):	Patient Position for ultrasound examination (Knee anterior approach)
Figure (10):	Quadriceps tendon
Figure (11):	Anterior suprapatellar longitudinal approach showing longitudinal view of the quadriceps tendon and the suprapatellar bursa
Figure (12):	Articular cartilage of the trochlea30
Figure (13):	Patellar tendon (Longitudinal view) 31
Figure (14):	Anterior infrapatellar longitudinal approach showing patella, tibia, patellar tendon from the inferior pole of the patella to the tibial tuberosity
Figure (15):	Medial collateral ligament32

Figure (16):	Medial meniscus
Figure (17):	Pes anserinus complex insertion
Figure (18):	The lateral collateral ligament
Figure (19):	Posterolateral corner of the knee joint
Figure (20):	The iliotibial band
Figure (21):	Semimembranosus-gastrocnemius bursa 36
Figure (22):	The popliteal vessels in LS
Figure (23):	Anterior elbow joint anatomy
Figure (24):	Anterior approach for distal biceps tendon evaluation
Figure (25):	Distal brachialis muscle evaluation
Figure (26):	Normal structures of the medial elbow joint 43
Figure (27):	Ultrasound technique of examination of the medial structures of the elbow
Figure (28):	Normal common flexor tendon and ulnar collaterla ligament
Figure (29):	Common flexor tendon and medial collateral ligament
Figure (30):	Normal common extensor tendon
Figure (31):	Normal distal triceps tendon
Figure (32):	The cubital fossa and ulnar nerve 50
Figure (33):	Anterior ankle position of US examination 51
Figure (34):	Normal anterior ankle showing the distal tibia, the talus, and the anterior tibiotalar joint
Figure (35):	Long-axis view of the normal tibialis anterior tendon
Figure (36):	Medial ankle – "Frog-leg" position for assessment of medial ankle

Figure (37):	Short-axis oblique view showing the medial compartment tendons of ankle
Figure (38):	Lateral ankle – Medial tilt of the leg for assessment of lateral ankle
Figure (39):	Short-axis view of peroneus longus and peroneus brevis tendons
Figure (40):	Posterior ankle -the Achilles tendon views 56
Figure (41): '	The vicious cycle of hemophilic arthropathy 61
Figure (42):	Schematic representation of a healthy joint and hemophilic arthropathy
Figure (43):	Schematic representation of the mechanisms of blood-induced joint damage in hemophilia 65
Figure (44):	Axial ultrasound images used to assess cartilage thickness of the distal femur
Figure (45):	Pie chart showing percentage distribution of patients of hemophilic arthropathy according to their age 90
Figure (46):	Diagram showing synovial thickening, synovial hyperemia, joint effusion, hemoarthrosis and osteochondral changes relationship with age98
Figure (47):	Bar chart showing relationship between the joints with normal and abnormal US findings in all the examined group
Figure (48):	Illustrative Case (1)
Figure (49):	Illustrative Case (1)
Figure (50):	Illustrative Case (1)
Figure (51):	Illustrative Case (2)
Figure (52):	Illustrative Case (2)
Figure (53):	Illustrative Case (3)
Figure (54):	Illustrative Case (3)

Figure (55): Illustrative Case (3)	106
Figure (56): Illustrative Case (3)	107
Figure (57): Illustrative Case (4)	108
Figure (58): Illustrative Case (4)	109
Figure (59): Illustrative Case (4)	109
Figure (60): Illustrative Case (5)	110
Figure (61): Illustrative Case (5)	111
Figure (62): Illustrative Case (5)	111
Figure (63): Illustrative Case (5)	111
Figure (64): Illustrative Case (6)	112
Figure (65): Illustrative Case (7)	113
Figure (66): Illustrative Case (7)	114
Figure (67): Illustrative Case (7)	114

List of Cases

Case No.	Page No.
Case (1)	100
Case (2)	102
Case (3)	103
Case (4)	107
Case (5)	109
Case (6)	111
Case (7)	112

Introduction

emophilia is an X-linked heritable coagulopathy which occurs in approximately 1 in 10,000 individuals. Hemophilia A (factor VIII deficiency) comprises about 80% of cases while hemophilia B (factor IX deficiency), comprises about 20% of cases. The prevalence of hemophilia A in males is 1 in 5000-10,000, while hemophilia B is estimated at 1 in 25,000-30,000 males. (*Pulles et al., 2016*) Von Willebrand disease (vWD) is a bleeding disorder of variable severity, caused by deficiency of von Willebrand factor (VWF), which is a multimeric plasma protein and an extracellular adapter molecule, linking platelets to the extracellular matrix and mediates their adhesion at the sites of endothelial injury (*Sadler, 2003*).

The severity of the hemophilia is classified as mild, moderate or severe, depending on the degree of factor activity. Patients with factor levels between 5 and 40% are classified as mild, those with activity between 1 and 5% are moderate and those with less than 1% factor level in blood are considered to have severe hemophilia *(Constantine et al., 2009)*. Generally, the severity of bleeding has an inverse correlation with the clotting factor level. Patients with severe hemophilia (factor level <1%) suffer spontaneous bleedings, whereas in the mild form of the disease (factor level >5%) bleeding only occurs after major trauma or after surgery. Spontaneous bleeding occurs mainly in the large synovial joints *(Pulles et al., 2016)*.

In patients affected with severe hemophilia (i.e., plasma factor VIII or IX < 1 U/dL), joint bleeding (haemarthrosis) is the most frequent manifestation in both children and adults (Melchiorre et al., 2017). Intra-articular bleeding triggers joint changes such as: synovitis and cartilaginous damage, which may even start after exposure to the first bleeding episode through activation of inflammatory mediators i.e. cytokines, eventually leading to progressive and permanent bone and joint damage (Izquierdo, 2017; Melchiorre et al., 2011; Seuser et al., 2018).

Factors contributing to hemophilic joint damage include recurrent hemoarthrosis, synovial inflammation and soft tissue hypertrophy (*von Drygalski et al.*, 2018) and the most commonly affected joints are the knees, ankles and elbows (*Di Minno et al.*, 2017; *Izquierdo*, 2017).

Target joints are defined as the joints that sustain several consecutive bleeding episodes (> 3 bleeds) within a short period of time (< 6 months). These target joints are the most prone to develop the hemophilic bony and soft tissue changes (*Izquierdo*, 2017). Although the use of prophylaxis against joint bleeding is increasing worldwide, a high percentage of patients still develop degenerative changes in their joints despite using this regimen (*Di Minno et al.*, 2017).